892 research outputs found

    Specific volumes of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy in the liquid, glass, and crystalline states

    Get PDF
    The specific volumes of the Zr41.2Ti13.8CU12.5Ni10.0Be2.25 alloy as a function of temperature, T, are determined by employing an image digitizing technique and numerical calculation methods applied to the electrostatically levitated spherical alloy. The linear fitting of the volumes of the alloy in the liquid, V-l, glass, V-g, and crystalline V-c, states in the temperature ranges shown in parentheses are V-l(T) = 0.1583 + 8.877 x 10(-6)T(cm^(3)/g) (700-1300 K); V-g(T) = 0.1603 + 5.528 x 10^(-6)T (400-550 K); V-c(T) = 0.1583 + 6.211 x 10(-6)T(400-850 K). The average volume thermal expansion coefficients within the temperature ranges are determined to be 5.32, 3.39, and 3.83 x 10^(-5) (1/K) for the liquid, glass, and crystalline states, respectively

    Hemispherical total emissivity and specific heat capacity of deeply undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts

    Get PDF
    High-temperature high-vacuum electrostatic levitation (HTHVESL) and differential scanning calorimetry (DSC) were combined to determine the hemispherical total emissivity epsilon T, and the specific heat capacity cp, of the undercooled liquid and throughout the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass forming alloy. The ratio of cp/epsilon T as a function of undercooling was determining from radiative cooling curves measured in the HTHVESL. Using specific heat capacity data obtained by DSC investigations close to the glass transition and above the melting point, epsilon T and cp were separated and the specific heat capacity of the whole undercooled liquid region was determined. Furthermore, the hemispherical total emissivity of the liquid was found to be about 0.22 at 980 K. On undercooling the liquid, the emissivity decreases to approximately 0.18 at about 670 K, where the undercooled liquid starts to freeze to a glass. No significant changes of the emissivity are observed as the alloy undergoes the glass transition

    Proton NMR studies of the electronic structure of ZrH/sub x/

    Get PDF
    The proton spin lattice relaxation times and Knight shifts were measured in f.c.c. (delta-phase) and f.c.t. (epsilon-phase) ZrH/sub x/ for 1.5 or = to x or = to 2.0. Both parameters indicate that N(E/sub F/) is very dependent upon hydrogen content with a maximum occurring at ZrH1 83. This behavior is ascribed to modifications in N(E/sub F/) through a fcc/fct distortion in ZrH/sub x/ associated with a Jahn-Teller effect

    Distinguishing n Hamiltonians on C^n by a single measurement

    Get PDF
    If an experimentalist wants to decide which one of n possible Hamiltonians acting on an n dimensional Hilbert space is present, he can conjugate the time evolution by an appropriate sequence of known unitary transformations in such a way that the different Hamiltonians result in mutual orthogonal final states. We present a general scheme providing such a sequence.Comment: 4 pages, Revte

    Complexity of decoupling and time-reversal for n spins with pair-interactions: Arrow of time in quantum control

    Full text link
    Well-known Nuclear Magnetic Resonance experiments show that the time evolution according to (truncated) dipole-dipole interactions between n spins can be inverted by simple pulse sequences. Independent of n, the reversed evolution is only two times slower than the original one. Here we consider more general spin-spin couplings with long range. We prove that some are considerably more complex to invert since the number of required time steps and the slow-down of the reversed evolutions are necessarily of the order n. Furthermore, the spins have to be addressed separately. We show for which values of the coupling parameters the phase transition between simple and complex time-reversal schemes occurs.Comment: Completely rewritten, new lower bounds on the number of time steps, applications and references adde

    Simulating Hamiltonians in Quantum Networks: Efficient Schemes and Complexity Bounds

    Get PDF
    We address the problem of simulating pair-interaction Hamiltonians in n node quantum networks where the subsystems have arbitrary, possibly different, dimensions. We show that any pair-interaction can be used to simulate any other by applying sequences of appropriate local control sequences. Efficient schemes for decoupling and time reversal can be constructed from orthogonal arrays. Conditions on time optimal simulation are formulated in terms of spectral majorization of matrices characterizing the coupling parameters. Moreover, we consider a specific system of n harmonic oscillators with bilinear interaction. In this case, decoupling can efficiently be achieved using the combinatorial concept of difference schemes. For this type of interactions we present optimal schemes for inversion.Comment: 19 pages, LaTeX2

    Demagnetization of Quantum Dot Nuclear Spins: Breakdown of the Nuclear Spin Temperature Approach

    Full text link
    The physics of interacting nuclear spins arranged in a crystalline lattice is typically described using a thermodynamic framework: a variety of experimental studies in bulk solid-state systems have proven the concept of a spin temperature to be not only correct but also vital for the understanding of experimental observations. Using demagnetization experiments we demonstrate that the mesoscopic nuclear spin ensemble of a quantum dot (QD) can in general not be described by a spin temperature. We associate the observed deviations from a thermal spin state with the presence of strong quadrupolar interactions within the QD that cause significant anharmonicity in the spectrum of the nuclear spins. Strain-induced, inhomogeneous quadrupolar shifts also lead to a complete suppression of angular momentum exchange between the nuclear spin ensemble and its environment, resulting in nuclear spin relaxation times exceeding an hour. Remarkably, the position dependent axes of quadrupolar interactions render magnetic field sweeps inherently non-adiabatic, thereby causing an irreversible loss of nuclear spin polarization.Comment: 15 pages, 3 figure

    Dynamical suppression of decoherence in two-state quantum systems

    Get PDF
    The dynamics of a decohering two-level system driven by a suitable control Hamiltonian is studied. The control procedure is implemented as a sequence of radiofrequency pulses that repetitively flip the state of the system, a technique that can be termed quantum "bang-bang" control after its classical analog. Decoherence introduced by the system's interaction with a quantum environment is shown to be washed out completely in the limit of continuous flipping and greatly suppressed provided the interval between the pulses is made comparable to the correlation time of the environment. The model suggests a strategy to fight against decoherence that complements existing quantum error-correction techniques.Comment: 15 pages, RevTeX style, 3 figures. Submitted to Phys. Rev.
    • 

    corecore