10,475 research outputs found

    Edge Electron Gas

    Full text link
    The uniform electron gas, the traditional starting point for density-based many-body theories of inhomogeneous systems, is inappropriate near electronic edges. In its place we put forward the appropriate concept of the edge electron gas.Comment: 4 pages RevTex with 7 ps-figures included. Minor changes in title,text and figure

    Probing the band structure of quadri-layer graphene with magneto-phonon resonance

    Full text link
    We show how the magneto-phonon resonance, particularly pronounced in sp2 carbon allotropes, can be used as a tool to probe the band structure of multilayer graphene specimens. Even when electronic excitations cannot be directly observed, their coupling to the E2g phonon leads to pronounced oscillations of the phonon feature observed through Raman scattering experiments with multiple periods and amplitudes detemined by the electronic excitation spectrum. Such experiment and analysis have been performed up to 28T on an exfoliated 4-layer graphene specimen deposited on SiO2, and the observed oscillations correspond to the specific AB stacked 4-layer graphene electronic excitation spectrum.Comment: 11 pages, 5 Fi

    The Decay Properties of the Finite Temperature Density Matrix in Metals

    Full text link
    Using ordinary Fourier analysis, the asymptotic decay behavior of the density matrix F(r,r') is derived for the case of a metal at a finite electronic temperature. An oscillatory behavior which is damped exponentially with increasing distance between r and r' is found. The decay rate is not only determined by the electronic temperature, but also by the Fermi energy. The theoretical predictions are confirmed by numerical simulations

    Linking entanglement and quantum phase transitions via density functional theory

    Full text link
    Density functional theory (DFT) is shown to provide a novel conceptual and computational framework for entanglement in interacting many-body quantum systems. DFT can, in particular, shed light on the intriguing relationship between quantum phase transitions and entanglement. We use DFT concepts to express entanglement measures in terms of the first or second derivative of the ground state energy. We illustrate the versatility of the DFT approach via a variety of analytically solvable models. As a further application we discuss entanglement and quantum phase transitions in the case of mean field approximations for realistic models of many-body systems.Comment: 6 pages, 2 figure

    Genuine converging solution of self-consistent field equations for extended many-electron systems

    Full text link
    Calculations of the ground state of inhomogeneous many-electron systems involve a solving of the Poisson equation for Coulomb potential and the Schroedinger equation for single-particle orbitals. Due to nonlinearity and complexity this set of equations, one believes in the iterative method for the solution that should consist in consecutive improvement of the potential and the electron density until the self-consistency is attained. Though this approach exists for a long time there are two grave problems accompanying its implementation to infinitely extended systems. The first of them is related with the Poisson equation and lies in possible incompatibility of the boundary conditions for the potential with the electron density distribution. The analysis of this difficulty and suggested resolution are presented for both infinite conducting systems in jellium approximation and periodic solids. It provides the existence of self-consistent solution for the potential at every iteration step due to realization of a screening effect. The second problem results from the existence of continuous spectrum of Hamiltonian eigenvalues for unbounded systems. It needs to have a definition of Hilbert space basis with eigenfunctions of continuous spectrum as elements, which would be convenient in numerical applications. The definition of scalar product specifying the Hilbert space is proposed that incorporates a limiting transition. It provides self-adjointness of Hamiltonian and, respectively, the orthogonality of eigenfunctions corresponding to the different eigenvalues. In addition, it allows to normalize them effectively to delta-function and to prove in the general case the orthogonality of the 'right' and 'left' eigenfunctions belonging to twofold degenerate eigenvalues.Comment: 12 pages. Reported on Interdisciplinary Workshop "Nonequilibrium Green's Functions III", August 22 - 26, 2005, University Kiel, Germany. To be published in Journal of Physics: Conference Series, 2006; Typos in Eqs. (37), (53) and (54) are corrected. The content of the footnote is changed. Published version available free online at http://www.iop.org/EJ/abstract/1742-6596/35/1/01

    Thermodynamic Properties of Generalized Exclusion Statistics

    Full text link
    We analytically calculate some thermodynamic quantities of an ideal gg-on gas obeying generalized exclusion statistics. We show that the specific heat of a gg-on gas (g≠0g \neq 0) vanishes linearly in any dimension as T→0T \to 0 when the particle number is conserved and exhibits an interesting dual symmetry that relates the particle-statistics at gg to the hole-statistics at 1/g1/g at low temperatures. We derive the complete solution for the cluster coefficients bl(g)b_l(g) as a function of Haldane's statistical interaction gg in DD dimensions. We also find that the cluster coefficients bl(g)b_l(g) and the virial coefficients al(g)a_l(g) are exactly mirror symmetric (ll=odd) or antisymmetric (ll=even) about g=1/2g=1/2. In two dimensions, we completely determine the closed forms about the cluster and the virial coefficients of the generalized exclusion statistics, which exactly agree with the virial coefficients of an anyon gas of linear energies. We show that the gg-on gas with zero chemical potential shows thermodynamic properties similar to the photon statistics. We discuss some physical implications of our results.Comment: 24 pages, Revtex, Corrected typo

    Simple model of the static exchange-correlation kernel of a uniform electron gas with long-range electron-electron interaction

    Full text link
    A simple approximate expression in real and reciprocal spaces is given for the static exchange-correlation kernel of a uniform electron gas interacting with the long-range part only of the Coulomb interaction. This expression interpolates between the exact asymptotic behaviors of this kernel at small and large wave vectors which in turn requires, among other thing, information from the momentum distribution of the uniform electron gas with the same interaction that have been calculated in the G0W0 approximation. This exchange-correlation kernel as well as its complement analogue associated to the short-range part of the Coulomb interaction are more local than the Coulombic exchange-correlation kernel and constitute potential ingredients in approximations for recent adiabatic connection fluctuation-dissipation and/or density functional theory approaches of the electronic correlation problem based on a separate treatment of long-range and short-range interaction effects.Comment: 14 pages, 14 figures, to be published in Phys. Rev.

    Kondo model for the "0.7 anomaly" in transport through a quantum point contact

    Full text link
    Experiments on quantum point contacts have highlighted an anomalous conductance plateau at 0.7(2e2/h)0.7 (2e^2/h), with features suggestive of the Kondo effect. Here we present an Anderson model for transport through a point contact which we analyze in the Kondo limit. Hybridization to the band increases abruptly with energy but decreases with valence, so that the background conductance and the Kondo temperature TKT_K are dominated by different valence transitions. This accounts for the high residual conductance above TKT_K. A spin-polarized current is predicted for Zeeman splitting g∗μBB>kBTK,kBTg^* \mu_B B > k_B T_K,k_BT.Comment: 4 page

    Strain in epitaxial MnSi films on Si(111) in the thick film limit studied by polarization-dependent extended x-ray absorption fine structure

    Full text link
    We report a study of the strain state of epitaxial MnSi films on Si(111) substrates in the thick film limit (100-500~\AA) as a function of film thickness using polarization-dependent extended x-ray absorption fine structure (EXAFS). All films investigated are phase-pure and of high quality with a sharp interface between MnSi and Si. The investigated MnSi films are in a thickness regime where the magnetic transition temperature TcT_\mathrm{c} assumes a thickness-independent enhanced value of ≥\geq43~K as compared with that of bulk MnSi, where Tc≈29 KT_\mathrm{c} \approx 29~{\rm K}. A detailed refinement of the EXAFS data reveals that the Mn positions are unchanged, whereas the Si positions vary along the out-of-plane [111]-direction, alternating in orientation from unit cell to unit cell. Thus, for thick MnSi films, the unit cell volume is essentially that of bulk MnSi --- except in the vicinity of the interface with the Si substrate (thin film limit). In view of the enhanced magnetic transition temperature we conclude that the mere presence of the interface, and its specific characteristics, strongly affects the magnetic properties of the entire MnSi film, even far from the interface. Our analysis provides invaluable information about the local strain at the MnSi/Si(111) interface. The presented methodology of polarization dependent EXAFS can also be employed to investigate the local structure of other interesting interfaces.Comment: 11 pages, 10 figure
    • …
    corecore