43 research outputs found
Structure and properties of the stable two-dimensional conducting polymer Mg5C60
We present a study on the structural, spectroscopic, conducting,
and
magnetic properties of Mg5C60, which is a two-dimensional (2D)
fulleride polymer. The polymer phase is stable up to the
exceptionally
high temperature of 823 K. The infrared and Raman studies
suggest the
formation of single bonds between the fulleride ions and
possibly
Mg-C-60 covalent bonds. Mg5C60 is a metal at ambient
temperature, as
shown by electron spin resonance and microwave conductivity
measurements. The smooth transition from a metallic to a
paramagnetic
insulator state below 200 K is attributed to Anderson
localization
driven by structural disorder
Transport properties and the anisotropy of Ba_{1-x}K_xFe_2As_2 single crystals in normal and superconducting states
The transport and superconducting properties of Ba_{1-x}K_xFe_2As_2 single
crystals with T_c = 31 K were studied. Both in-plane and out-of plane
resistivity was measured by modified Montgomery method. The in-plane
resistivity for all studied samples, obtained in the course of the same
synthesis, is almost the same, unlike to the out-of plane resistivity, which
differ considerably. We have found that the resistivity anisotropy
\gamma=\rho_c /\rho_{ab} is almost temperature independent and lies in the
range 10-30 for different samples. This, probably, indicates on the extrinsic
nature of high out-of-plane resistivity, which may appear due to the presence
of the flat defects along Fe-As layers in the samples. This statement is
supported by comparatively small effective mass anisotropy, obtained from the
upper critical field measurements, and from the observation of the so-called
"Friedel transition", which indicates on the existence of some disorder in the
samples in c-direction.Comment: 5 pages, 5 figure
Anomalous behaviour of the in-plane electrical conductivity of the layered superconductor -(BEDT-TTF)Cu(NCS)
The quasiparticle scattering rates in high-quality crystals of the
quasi-two-dimensional superconductor -(BEDT-TTF)Cu(NCS) ~are
studied using the Shubnikov-de Haas effect and MHz penetration-depth
experiments. There is strong evidence that the broadening of the Landau-levels
is primarily caused by spatial inhomogeneities, indicating a quasiparticle
lifetime for the Landau states ps. In contrast to the predictions of
Fermi-liquid theory, the scattering time derived from the intralayer
conductivity is found to be much shorter ( ps)
On-chain electrodynamics of metallic (TMTSF)_2 X salts: Observation of Tomonaga-Luttinger liquid response
We have measured the electrodynamic response in the metallic state of three
highly anisotropic conductors, (TMTSF)_2 X, where X=PF_6, AsF_6, or ClO_4, and
TMTSF is the organic molecule tetramethyltetraselenofulvalene. In all three
cases we find dramatic deviations from a simple Drude response. The optical
conductivity has two features: a narrow mode at zero frequency, with a small
spectral weight, and a mode centered around 200 cm^{-1}, with nearly all of the
spectral weight expected for the relevant number of carriers and single
particle bandmass. We argue that these features are characteristic of a nearly
one-dimensional half- or quarter-filled band with Coulomb correlations, and
evaluate the finite energy mode in terms of a one-dimensional Mott insulator.
At high frequencies (\hbar\omega > t_\perp, the transfer integral perpendicular
to the chains), the frequency dependence of the optical conductivity
\sigma_1(\omega) is in agreement with calculations based on an interacting
Tomonaga-Luttinger liquid, and is different from what is expected for an
uncorrelated one-dimensional semiconductor. The zero frequency mode shows
deviations from a simple Drude response, and can be adequately described with a
frequency dependent mass and relaxation rate.Comment: 12 pages, 7 figures, RevTeX; minor corrections to text and
references; To be published in Phys. Rev. B, 15 July 199
Transport properties of strongly correlated metals:a dynamical mean-field approach
The temperature dependence of the transport properties of the metallic phase
of a frustrated Hubbard model on the hypercubic lattice at half-filling are
calculated. Dynamical mean-field theory, which maps the Hubbard model onto a
single impurity Anderson model that is solved self-consistently, and becomes
exact in the limit of large dimensionality, is used. As the temperature
increases there is a smooth crossover from coherent Fermi liquid excitations at
low temperatures to incoherent excitations at high temperatures. This crossover
leads to a non-monotonic temperature dependence for the resistance,
thermopower, and Hall coefficient, unlike in conventional metals. The
resistance smoothly increases from a quadratic temperature dependence at low
temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar
a/e^2 (where "a" is a lattice constant) associated with mean-free paths less
than a lattice constant. Further signatures of the thermal destruction of
quasiparticle excitations are a peak in the thermopower and the absence of a
Drude peak in the optical conductivity. The results presented here are relevant
to a wide range of strongly correlated metals, including transition metal
oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure
Comparison of coherent and weakly incoherent transport models for the interlayer magnetoresistance of layered Fermi liquids
The interlayer magnetoresistance of layered metals in a tilted magnetic field
is calculated for two distinct models for the interlayer transport. The first
model involves coherent interlayer transport and makes use of results of
semi-classical or Bloch-Boltzmann transport theory. The second model involves
weakly incoherent interlayer transport where the electron is scattered many
times within a layer before tunneling into the next layer. The results are
relevant to the interpretation of experiments on angular-dependent
magnetoresistance oscillations (AMRO) in quasi-one- and quasi-two-dimensional
metals. We find that the dependence of the magnetoresistance on the direction
of the magnetic field is identical for both models except when the field is
almost parallel to the layers. An important implication of this result is that
a three-dimensional Fermi surface is not necessary for the observation of the
Yamaji and Danner oscillations seen in quasi-two- and quasi-one-dimensional
metals, respectively. A universal expression is given for the dependence of the
resistance at AMRO maxima and minima on the magnetic field and scattering time
(and thus the temperature). We point out three distinctive features of coherent
interlayer transport: (i) a beat frequency in the magnetic oscillations of
quasi-two-dimensional systems, (ii) a peak in the angular-dependent
magnetoresistance when the field is sufficiently large and parallel to the
layers, and (iii) a crossover from a linear to a quadratic field dependence for
the magnetoresistance when the field is parallel to the layers. Properties (i)
and (ii) are compared with published experimental data for a range of
quasi-two-dimensional organic metals and for Sr2RuO4.Comment: 21 pages, RevTeX + epsf, 4 figures. Published version. Subsection
added. References update
Incoherent interlayer transport and angular-dependent magnetoresistance oscillations in layered metals
The effect of incoherent interlayer transport on the interlayer resistance of a layered metal is considered. We find that for both quasi-one-dimensional and quasi-two-dimensional Fermi liquids the angular dependence of the magnetoresistance is essentially the same for coherent and incoherent transport. Consequently, the existence of a three-dimensional Fermi surface is not necessary to explain the oscillations in the magnetoresistance that are seen in many organic conductors as the field direction is varied. [S0031-9007(98)07660-1]
Incoherent Interplane Conductivity of kappa-(BEDT-TTF)2Cu[N(CN)2]Br
The interplane optical spectrum of the organic superconductor
kappa-(BEDT-TTF)2Cu[N(CN)2]Br was investigated in the frequency range from 40
to 40,000 cm-1. The optical conductivity was obtained by Kramers-Kronig
analysis of the reflectance. The absence of a Drude peak at low frequency is
consistent with incoherent conductivity but in apparent contradiction to the
metallic temperature dependence of the DC resistivity. We set an upper limit to
the interplane transfer integral of tb = 0.1 meV. A model of defect-assisted
interplane transport can account for this discrepancy. We also assign the
phonon lines in the conductivity to the asymmetric modes of the ET molecule.Comment: 7 pages with embedded figures, submitted to PR
Influence of internal disorder on the superconducting state in the organic layered superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br
We report high-sensitivity AC susceptibility measurements of the penetration
depth in the Meissner state of the layered organic superconductor
kappa-(BEDT-TTF)2Cu[N(CN)2]Br. We have studied nominally pure single crystals
from the two different syntheses and employed controlled cooling procedures in
order to minimize intrinsic remnant disorder at low temperatures associated
with the glass transition, caused by ordering of the ethylene moieties in
BEDT-TTF molecule at T_G = 75 K. We find that the optimal cooling procedures
(slow cooling of -0.2 K/h or annealing for 3 days in the region of T_G) needed
to establish the ground state, depend critically on the sample origin
indicating different relaxation times of terminal ethylene groups. We show
that, in the ground state, the behavior observed for nominally pure single
crystals from both syntheses is consistent with unconventional d-wave order
parameter. The in-plane penetration depth lambda_in(T) is strongly linear,
whereas the out-of-plane component lambda_out(T) varies as T^2. In contrast,
the behavior of single crystals with long relaxation times observed after slow
(-0.2 K/h) cooling is as expected for a d-wave superconductor with impurities
(i.e. lambda_in(T) propto lambda_out(T) propto T^2) or might be also reasonably
well described by the s-wave model. Our results might reconcile the
contradictory findings previously reported by different authors.Comment: 13 pages, 10 figures, submitted to Phys. Rev.