37 research outputs found

    Inflation from Supergravity with Gauged R-symmetry in de Sitter Vacuum

    Get PDF
    We study the cosmology of a recent model of supersymmetry breaking, in the presence of a tuneable positive cosmological constant, based on a gauged shift symmetry of a string modulus that can be identified with the string dilaton. The minimal spectrum of the `hidden' supersymmetry breaking sector consists then of a vector multiplet that gauges the shift symmetry of the dilaton multiplet and when coupled to the MSSM leads to a distinct low energy phenomenology depending on one parameter. Here we study the question if this model can also lead to inflation by identifying the dilaton with the inflaton. We find that this is possible if the K\"ahler potential is modified by a term that has the form of NS5-brane instantons, leading to an appropriate inflationary plateau around the maximum of the scalar potential, depending on two extra parameters. This model is consistent with present cosmological observations without modifying the low energy particle phenomenology associated to the minimum of the scalar potential.Comment: 19 pages, 5 figures, References adde

    Dark energy and moduli stabilization of extra dimensions in M^{1+3}xT^2 spacetime

    Full text link
    Recently, it was found by Greene and Levin that the Casimir energy of certain combinations of massless and massive fields in space with extra dimensions play a crucial role in the accelerated expansion of the late-time universe and therefore it could serve as a candidate for the dark energy. It also provides a mechanism in stabilizing the volume moduli of extra dimensions. However, the shape moduli of the extra dimensions were never taken into account in the previous work. We therefore study the stabilization mechanism for both volume and shape moduli due to the Casimir energy in M1+3×T2{\mathbb M}^{1+3} \times {\mathbb T}^{2}. The result of our study shows that the previously known local minimum is a saddle point. It is unstable to the perturbations in the direction of the shape moduli. The new stable local minima stabilizes all the moduli and drives the accelerating expansion of the universe. The cosmological dynamics both in the bulk and the radion pictures are derived and simulated. The equations of state for the Casimir energy in a general torus are derived. Shear viscosity in extra dimensions induced by the Casimir density in the late times is identified and calculated, it is found to be proportional to the Hubble constant.Comment: 19 pages, 7 figures, references adde

    Target space duality and moduli stabilization in String Gas Cosmology

    Full text link
    Motivated by string gas cosmology, we investigate the stability of moduli fields coming from compactifications of string gas on torus with background flux. It was previously claimed that moduli are stabilized only at a single fixed point in moduli space, a self-dual point of T-duality with vanishing flux. Here, we show that there exist other stable fixed points on moduli space with non-vanishing flux. We also discuss the more general target space dualities associated with these fixed points.Comment: 12 pages, 1 figur

    3D N=6 Gauged Supergravity: Admissible Gauge Groups, Vacua and RG Flows

    Full text link
    We study N=6 gauged supergravity in three dimensions with scalar manifolds SU(4,k)S(U(4)×U(k))\frac{SU(4,k)}{S(U(4)\times U(k))} for k=1,2,3,4k=1,2,3,4 in great details. We classify some admissible non-compact gauge groups which can be consistently gauged and preserve all supersymmetries. We give the explicit form of the embedding tensors for these gauge groups as well as study their scalar potentials on the full scalar manifold for each value of k=1,2,3,4k=1,2,3,4 along with the corresponding vacua. Furthermore, the potentials for the compact gauge groups, SO(p)×SO(6p)×SU(k)×U(1)SO(p)\times SO(6-p)\times SU(k)\times U(1) for p=3,4,5,6p=3,4,5,6, identified previously in the literature are partially studied on a submanifold of the full scalar manifold. This submanifold is invariant under a certain subgroup of the corresponding gauge group. We find a number of supersymmetric AdS vacua in the case of compact gauge groups. We then consider holographic RG flow solutions in the compact gauge groups SO(6)×SU(4)×U(1)SO(6)\times SU(4)\times U(1) and SO(4)×SO(2)×SU(4)×U(1)SO(4)\times SO(2)\times SU(4)\times U(1) for the k=4 case. The solutions involving one active scalar can be found analytically and describe operator flows driven by a relevant operator of dimension 3/2. For non-compact gauge groups, we find all types of vacua namely AdS, Minkowski and dS, but there is no possibility of RG flows in the AdS/CFT sense for all gauge groups considered here.Comment: 43 pages, no figures references added, typoes corrected and more information adde

    Domain walls in three dimensional gauged supergravity

    Full text link
    We explicitly construct two Chern-Simons gauged supergravities in three dimensions with N=4 and N=8 supersymmetries and non-semisimple gauge groups. The N=4 theory has scalar manifold SO(4,3)/SO(4)×SO(3)SO(4,3)/SO(4)\times SO(3) with the gauge group SO(3)(T3,T^3)SO(3)\ltimes (\mathbf{T}^3,\hat{\mathbf{T}}^3). The theory describes (1,0) six dimensional supergravity reduced on an SU(2) group manifold. The equivalent Yang-Mills type gauged supergravity has SO(3) gauge group coupled to three massive vector fields. The N=8 theory is described by SO(8,8)/SO(8)×SO(8)SO(8,8)/SO(8)\times SO(8) scalar manifold, and the gauge group is given by SO(8)T28SO(8)\ltimes \mathbf{T}^{28}. The theory is a truncation of the SO(8)T28SO(8)\ltimes \mathbf{T}^{28} gauged N=16 theory with scalar manifold E8(8)/SO(16)E_{8(8)}/SO(16) and can be obtained by an S^7 compactification of type I theory in ten dimensions. Domain wall solutions of both gauged supergravities are analytically found and can be uplifted to higher dimensions. These provide domain wall vacua in the three dimensional gauged supergravity framework which might be useful for the study of Domain Wall3_3/QFT2_2 correspondence.Comment: 19 pages, no figures, typoes and a mistake in a sign corrected, clarifications on the notations adde

    {\AE}ther Field, Casimir Energy and Stabilization of The Extra Dimension

    Full text link
    In our five-dimensional cosmological model, we investigate the role of a Lorentz violating vector "{\ae}ther" field on the moduli stabilization mechanism. We consider the case of a space-like {\ae}ther field on a compact circle with Maxwell-type kinetic term. The Casimir energy of certain combinations of massless and massive bulk fields generates a stabilizing potential for the radius of the compact direction while driving the accelerated expansion in the non-compact directions. It is shown that the {\ae}ther field can reduce the influence of the Casimir force and slow down the oscillation of the radion field. This property proves crucial to the stability of the extra dimension in the universe where non-relativistic matter is present. We speculate that this scenario might reveal a hidden connection between the dimensionality of spacetime and the spontaneous breaking of Lorentz symmetry.Comment: 19 pages, 5 figures, added references and comments from refere

    Fermionic Casimir effect in toroidally compactified de Sitter spacetime

    Full text link
    We investigate the fermionic condensate and the vacuum expectation values of the energy-momentum tensor for a massive spinor field in de Sitter spacetime with spatial topology Rp×(S1)q\mathrm{R}^{p}\times (\mathrm{S}^{1})^{q}. Both cases of periodicity and antiperiodicity conditions along the compactified dimensions are considered. By using the Abel-Plana formula, the topological parts are explicitly extracted from the vacuum expectation values. In this way the renormalization is reduced to the renormalization procedure in uncompactified de Sitter spacetime. It is shown that in the uncompactified subspace the equation of state for the topological part of the energy-momentum tensor is of the cosmological constant type. Asymptotic behavior of the topological parts in the expectation values is investigated in the early and late stages of the cosmological expansion. In the limit when the comoving length of a compactified dimension is much smaller than the de Sitter curvature radius the topological part in the expectation value of the energy-momentum tensor coincides with the corresponding quantity for a massless field and is conformally related to the corresponding flat spacetime result. In this limit the topological part dominates the uncompactified de Sitter part. In the opposite limit, for a massive field the asymptotic behavior of the topological parts is damping oscillatory for both fermionic condensate and the energy-momentum tensor.Comment: 19 pages, 5 figure

    AdS5AdS_{5} black hole at N=2 supergravity

    Full text link
    In this paper, we consider the charged non-extremal black hole at five dimensional N = 2 supergravity. We study thermodynamics of AdS_{5} black hole with three equal charges (q_{1} = q_{2} = q_{3} = q). We obtain Schrodinger like equation and discuss the effective potential. Then, we consider the case of the perturbed dilaton field background and find presence of odd coefficients of the wave function. Also we find that the higher derivative corrections have no effect on the first and second even coefficients of the wave function.Comment: 17 pages, 4 figures. Published versio

    Gravitational and Yang-Mills instantons in holographic RG flows

    Full text link
    We study various holographic RG flow solutions involving warped asymptotically locally Euclidean (ALE) spaces of AN1A_{N-1} type. A two-dimensional RG flow from a UV (2,0) CFT to a (4,0) CFT in the IR is found in the context of (1,0) six dimensional supergravity, interpolating between AdS3×S3/ZNAdS_3\times S^3/\mathbb{Z}_N and AdS3×S3AdS_3\times S^3 geometries. We also find solutions involving non trivial gauge fields in the form of SU(2) Yang-Mills instantons on ALE spaces. Both flows are of vev type, driven by a vacuum expectation value of a marginal operator. RG flows in four dimensional field theories are studied in the type IIB and type I' context. In type IIB theory, the flow interpolates between AdS5×S5/ZNAdS_5\times S^5/\mathbb{Z}_N and AdS5×S5AdS_5\times S^5 geometries. The field theory interpretation is that of an N=2 SU(n)NSU(n)^N quiver gauge theory flowing to N=4 SU(n) gauge theory. In type I' theory the solution describes an RG flow from N=2 quiver gauge theory with a product gauge group to N=2 gauge theory in the IR, with gauge group USp(n)USp(n). The corresponding geometries are AdS5×S5/(ZN×Z2)AdS_5\times S^5/(\mathbb{Z}_N\times \mathbb{Z}_2) and AdS5×S5/Z2AdS_5\times S^5/\mathbb{Z}_2, respectively. We also explore more general RG flows, in which both the UV and IR CFTs are N=2 quiver gauge theories and the corresponding geometries are AdS5×S5/(ZN×Z2)AdS_5\times S^5/(\mathbb{Z}_N\times \mathbb{Z}_2) and AdS5×S5/(ZM×Z2)AdS_5\times S^5/(\mathbb{Z}_M\times \mathbb{Z}_2). Finally, we discuss the matching between the geometric and field theoretic pictures of the flows.Comment: 32 pages, 3 figures, typoe corrected and a reference adde
    corecore