134 research outputs found

    Eating Fish and Risk of Type 2 Diabetes: A population-based, prospective follow-up study

    Get PDF
    Objective: To investigate the relation between total fish, type of fish (lean and fatty), and EPA&DHA intake and risk of type 2 diabetes in a population-based cohort. Research design and methods: The analysis included 4,472 Dutch participants aged =55 years without diabetes at baseline. Dietary intake was assessed with a semi-quantitative food frequency questionnaire. Hazard ratios (RR) with 95% confidence intervals (95% CI) were used to examine risk associations adjusted for age, sex, lifestyle, and nutritional factors. Results: After 15 years of follow-up, 463 participants developed type 2 diabetes. Median fish intake, mainly lean fish (81% ), was 10 g/d. Total fish intake was associated positively with risk of type 2 diabetes; the RR was 1.32 (95% CI 1.02, 1.70) in the highest total fish group (=28 g/d) compared with non-fish eaters (p for trend= 0.04). Correspondingly, lean fish intake tended to be associated positively with type 2 diabetes (RR highest group (=23 g/d): 1.30 (95% CI 1.01, 1.68), p for trend= 0.06), but fatty fish was not. No association was observed between EPA&DHA intake and type 2 diabetes (RR highest group (=149.4 mg/d): 1.22 (95% CI 0.97, 1.53)). When additionally adjusted for intake of selenium, cholesterol, and vitamin D this RR decreased to 1.05 (95% CI 0.80, 1.38) (p for trend= 0.77). Conclusion: The findings do not support a beneficial effect of total fish, type of fish, or EPA&DHA intake on the risk of type 2 diabetes. Alternatively, other dietary components, like selenium, and unmeasured contaminants present in fish might explain our result

    Exome-wide meta-analysis identifies rare 3'-UTR variant in ERCC1/CD3EAP associated with symptoms of sleep apnea

    Get PDF
    Obstructive sleep apnea (OSA) is a common sleep breathing disorder associated with an increased risk of cardiovascular and cerebrovascular diseases and mortality. Although OSA is fairly heritable (~40%), there have been only few studies looking into the genetics of OSA. In the present study, we aimed to identify genetic variants associated with symptoms of sleep apnea by performing a whole-exome sequence meta-analysis of symptoms of sleep apnea in 1,475 individuals of European descent. We identified 17 rare genetic variants with at least suggestive evidence of significance. Replication in an independent dataset confirmed the association of a rare genetic variant (rs2229918; minor allele frequency = 0.3%) with symptoms of sleep apnea (p-valuemeta = 6.98 × 10-9, ßmeta = 0.99). Rs2229918 overlaps with the 3' untranslated regions of ERCC1 and CD3EAP genes on chromosome 19q13. Both genes are expressed in tissues in the neck area, such as the tongue, muscles, cartilage and the trachea. Further, CD3EAP is localized in the nucleus and mitochondria and involved in the tumor necrosis factor-alpha/nuclear factor kappa B signaling pathway. Our results and biological functions of CD3EAP/ERCC1 genes suggest that the 19q13 locus is interesting for further OSA research

    Associations of Activity and Sleep With Quality of Life: A Compositional Data Analysis

    Get PDF
    Introduction: Associations between time spent on physical activity, sedentary behavior, and sleep and quality of life are usually studied without considering that their combined time is fixed. This study investigates the reallocation of time spent on physical activity, sedentary behavior, and sleep during the 24-hour day and their associations with quality of life. Methods: Data from the 2011–2016 Rotterdam Study were used to perform this cross-sectional analysis among 1,934 participants aged 51–94 years. Time spent in activity levels (sedentary, light-intensity physical activity, moderate-to-vigorous physical activity, and sleep) were objectively measured with a wrist-worn accelerometer combined with a sleep diary. Quality of life was measured using the EuroQoL 5D-3L questionnaire. The compositional isotemporal substitution method was used in 2018 to examine the association between the distribution of time spent in different activity behaviors and quality of life. Results: Reallocation of 30 minutes from sedentary behavior, light-intensity physical activity, or sleep to moderate-to-vigorous physical activity was associated with a higher quality of life, whereas reallocation from moderate-to-vigorous physical activity to sedentary behavior, light-intensity physical activity, or sleep was associated with lower quality of life. To illustrate this, a reallocation of 30 minutes from sedentary behavior to moderate-to-vigorous physical activity was associated with a 3% (95% CI=2, 4) higher quality of life score. By contrast, a reallocation of 30 minutes from moderate-to-vigorous physical activity to sedentary behavior was associated with a 4% (95% CI=2, 6) lower quality of life score. Conclusions: Moderate-to-vigorous physical activity is important with regard to the quality of life of middle-aged and elderly individuals. The benefits of preventing less time spent in moderate-to-vigorous physical activity were greater than the benefits of more time spent in moderate-to-vigorous physical activity. These results could shift the attention to interventions focused on preventing reductions in moderate-to-vigorous physical activity levels. Further longitudinal studies are needed to confirm these findings and explore causality

    Characterization of pathogenic SORL1 genetic variants for association with Alzheimer's disease

    Get PDF
    Accumulating evidence suggests that genetic variants in the SORL1 gene are associated with Alzheimer disease (AD), but a strategy to identify which variants are pathogenic is lacking. In a discovery sample of 115 SORL1 variants detected in 1908 Dutch AD cases and controls, we identified the variant characteristics associated with SORL1 variant pathogenicity. Findings were replicated in an independent sample of 103 SORL1 variants detected in 3193 AD cases and controls. In a combined sample of the discovery and replication samples, comprising 181 unique SORL1 variants, we developed a strategy to classify SORL1 variants into five subtypes ranging from pathogenic to benign. We tested this pathogenicity screen in SORL1 variants reported in two independent published studies. SORL1 variant pathogenicity is defined by the Combined Annotation Dependent Depletion (CADD) score and the minor allele frequency (MAF) reported by the Exome Aggregation Consortium (ExAC) database. Variants predicted strongly damaging (CADD score >30), which are extremely rare (ExAC-MAF <1 × 10 '5) increased AD risk by 12-fold (95% CI 4.2-34.3; P=5 × 10 '9). Protein-truncating SORL1 mutations were all unknown to ExAC and occurred exclusively in AD cases. More common SORL1 variants (ExAC-MAF≥1 × 10 '5) were not associated with increased AD risk, even when predicted strongly damaging. Findings were independent of gender and the APOE-I 4 allele. High-risk SORL1 variants were observed in a substantial proportion of the AD cases analyzed (2%). Based on their effect size, we propose to consider high-risk SORL1 variants next to variants in APOE, PSEN1, PSEN2 and APP for personalized risk assessments in clinical practice

    Exome Sequencing Analysis Identifies Rare Variants in ATM and RPL8 That Are Associated With Shorter Telomere Length

    Get PDF
    Telomeres are important for maintaining genomic stability. Telomere length has been associated with aging, disease, and mortality and is highly heritable (∼82%). In this study, we aimed to identify rare genetic variants associated with telomere length using whole-exome sequence data. We studied 1,303 participants of the Erasmus Rucphen Family (ERF) study, 1,259 of the Rotterdam Study (RS), and 674 of the British Heart Foundation Family Heart Study (BHF-FHS). We conducted two analyses, first we analyzed the family-based ERF study and used the RS and BHF-FHS for replication. Second, we combined the summary data of the three studies in a meta-analysis. Telomere length was measured by quantitative polymerase chain reaction in blood. We identified nine rare variants significantly associated with telomere length (p-value < 1.42 × 10–7, minor allele frequency of 0.2–0.5%) in the ERF study. Eight of these variants (in C11orf65, ACAT1, NPAT, ATM, KDELC2, and EXPH5) were located on chromosome 11q22.3 that contains ATM, a gene involved in telomere maintenance. Although we were unable to replicate the variants in the RS and BHF-FHS (p-value ≥ 0.21), segregation analysis showed that all variants segregate with shorter telomere length in a family. In the meta-analysis of all studies, a nominally significant association with LTL was observed with a rare variant in RPL8 (p-value = 1.48 × 10−6), which has previously been associated with age. Additionally, a novel rare variant in the known RTEL1 locus showed suggestive evidence for association (p-value = 1.18 × 10–4) with LTL. To conclude, we identified novel rare variants associated with telomere length. Larger samples size are needed to confirm these findings and to identify additional variants

    MicroRNA-106b~25 cluster is upregulated in relapsed MLL-rearranged pediatric acute myeloid leukemia

    Get PDF
    The most important reason for therapy failure in pediatric acute myeloid leukemia (AML) is relapse. In order to identify miRNAs that contribute to the clonal evolution towards relapse in pediatric AML, miRNA expression profiling of 127 de novo pediatric AML cases were used. In the diagnostic phase, no miRNA signatures could be identified that were predictive for relapse occurrence, in a large pediatric cohort, nor in a nested mixed lineage leukemia (MLL)-rearranged pediatric cohort. AML with MLL- rearrangements are found in 15-20% of all pediatric AML samples, and reveal a relapse rate up to 50% for certain translocation partner subgroups. Therefore, microRNA expression profiling of six paired initial diagnosis-relapse MLL-rearranged pediatric AML samples (test cohort) and additional eight paired initial diagnosisrelapse samples with MLL-rearrangements (validation cohort) was performed. A list of 53 differentially expressed miRNAs was identified of which the miR-106b~25 cluster, located in intron 13 of MCM7, was the most prominent. These differentially expressed miRNAs however could not predict a relapse in de novo AML samples with MLLrearrangements at diagnosis. Furthermore, higher mRNA expression of both MCM7 and its upstream regulator E2F1 was found in relapse samples with MLL-rearrangements. In conclusion, we identified the miR-106b~25 cluster to be upregulated in relapse pediatric AML with MLL-rearrangements

    Large-scale whole-exome sequencing association studies identify rare functional variants influencing serum urate levels.

    Get PDF
    Elevated serum urate levels can cause gout, an excruciating disease with suboptimal treatment. Previous GWAS identified common variants with modest effects on serum urate. Here we report large-scale whole-exome sequencing association studies of serum urate and kidney function among ≤19,517 European ancestry and African-American individuals. We identify aggregate associations of low-frequency damaging variants in the urate transporters SLC22A12 (URAT1; p = 1.3 × 10 &lt;sup&gt;-56&lt;/sup&gt; ) and SLC2A9 (p = 4.5 × 10 &lt;sup&gt;-7&lt;/sup&gt; ). Gout risk in rare SLC22A12 variant carriers is halved (OR = 0.5, p = 4.9 × 10 &lt;sup&gt;-3&lt;/sup&gt; ). Selected rare variants in SLC22A12 are validated in transport studies, confirming three as loss-of-function (R325W, R405C, and T467M) and illustrating the therapeutic potential of the new URAT1-blocker lesinurad. In SLC2A9, mapping of rare variants of large effects onto the predicted protein structure reveals new residues that may affect urate binding. These findings provide new insights into the genetic architecture of serum urate, and highlight molecular targets in SLC22A12 and SLC2A9 for lowering serum urate and preventing gout

    Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution

    Get PDF
    We show that epigenome- and transcriptome-wide association studies (EWAS and TWAS) are prone to significant inflation and bias of test statistics, an unrecognized phenomenon introducing spurious findings if left unaddressed. Neither GWAS-based methodology nor state-of-the-art confounder adjustment methods completely remove bias and inflation. We propose a Bayesian method to control bias and inflation in EWAS and TWAS based on estimation of the empirical null distribution. Using simulations and real data, we demonstrate that our method maximizes power while properly controlling the false positive rate. We illustrate the utility of our method in large-scale EWAS and TWAS meta-analyses of age and smoking

    EIF2AK3 variants in Dutch patients with Alzheimer's disease

    Get PDF
    Next-generation sequencing has contributed to our understanding of the genetics of Alzheimer's disease (AD) and has explained a substantial part of the missing heritability of familial AD. We sequenced 19 exomes from 8 Dutch families with a high AD burden and identified EIF2AK3, encoding for protein kinase RNA-like endoplasmic reticulum kinase (PERK), as a candidate gene. Gene-based burden analysis in a Dutch AD exome cohort containing 547 cases and 1070 controls showed a significant association of EIF2AK3 with AD (OR 1.84 [95% CI 1.07–3.17], p-value 0.03), mainly driven by the variant p.R240H. Genotyping of this variant in an additional cohort from the Rotterdam Study showed a trend toward association with AD (p-value 0.1). Immunohistochemical staining with pPERK and peIF2α of 3 EIF2AK3 AD carriers showed an increase in hippocampal neuronal cells expressing these proteins compared with nondemented controls, but no difference was observed in AD noncarriers. This study suggests that rare variants in EIF2AK3 may be associated with disease risk in AD
    corecore