15,345 research outputs found

    Recognizing well-parenthesized expressions in the streaming model

    Full text link
    Motivated by a concrete problem and with the goal of understanding the sense in which the complexity of streaming algorithms is related to the complexity of formal languages, we investigate the problem Dyck(s) of checking matching parentheses, with ss different types of parenthesis. We present a one-pass randomized streaming algorithm for Dyck(2) with space \Order(\sqrt{n}\log n), time per letter \polylog (n), and one-sided error. We prove that this one-pass algorithm is optimal, up to a \polylog n factor, even when two-sided error is allowed. For the lower bound, we prove a direct sum result on hard instances by following the "information cost" approach, but with a few twists. Indeed, we play a subtle game between public and private coins. This mixture between public and private coins results from a balancing act between the direct sum result and a combinatorial lower bound for the base case. Surprisingly, the space requirement shrinks drastically if we have access to the input stream in reverse. We present a two-pass randomized streaming algorithm for Dyck(2) with space \Order((\log n)^2), time \polylog (n) and one-sided error, where the second pass is in the reverse direction. Both algorithms can be extended to Dyck(s) since this problem is reducible to Dyck(2) for a suitable notion of reduction in the streaming model.Comment: 20 pages, 5 figure

    Density Matrix Renormalization Group Study of Incompressible Fractional Quantum Hall States

    Full text link
    We develop the Density Matrix Renormalization Group (DMRG) technique for numerically studying incompressible fractional quantum Hall (FQH) states on the sphere. We calculate accurate estimates for ground state energies and excitationgaps at FQH filling fractions \nu=1/3 and \nu=5/2 for systems that are almost twice as large as the largest ever studied by exact diagonalization. We establish, by carefully comparing with existing numerical results on smaller systems, that DMRG is a highly effective numerical tool for studying incompressible FQH states.Comment: 5 pages, 4 figure

    Schwinger Mechanism for Gluon Pair Production in the Presence of Arbitrary Time Dependent Chromo-Electric Field

    Full text link
    We study Schwinger mechanism for gluon pair production in the presence of arbitrary time-dependent chromo-electric background field Ea(t)E^a(t) with arbitrary color index aa=1,2,...8 in SU(3) by directly evaluating the path integral. We obtain an exact expression for the probability of non-perturbative gluon pair production per unit time per unit volume and per unit transverse momentum dWd4xd2pT\frac{dW}{d^4x d^2p_T} from arbitrary Ea(t)E^a(t). We show that the tadpole (or single gluon) effective action does not contribute to the non-perturbative gluon pair production rate dWd4xd2pT\frac{dW}{d^4x d^2p_T}. We find that the exact result for non-perturbative gluon pair production is independent of all the time derivatives dnEa(t)dtn\frac{d^nE^a(t)}{dt^n} where n=1,2,....∞n=1,2,....\infty and has the same functional dependence on two casimir invariants [Ea(t)Ea(t)][E^a(t)E^a(t)] and [dabcEa(t)Eb(t)Ec(t)]2[d_{abc}E^a(t)E^b(t)E^c(t)]^2 as the constant chromo-electric field EaE^a result with the replacement: Ea→Ea(t)E^a \to E^a(t). This result may be relevant to study the production of a non-perturbative quark-gluon plasma at RHIC and LHC.Comment: 13 pages latex, Published in European Physical Journal

    Production and Equilibration of the Quark-Gluon Plasma with Chromoelectric Field and Minijets

    Full text link
    Production and equilibration of quark-gluon plasma are studied within the color flux-tube model, at the RHIC and LHC energies. Non-Abelian relativistic transport equations for quarks, antiquarks and gluons, are solved in the extended phase space which includes coordinates, momenta and color. Before the chromoelectric field is formed, hard and semihard partons are produced via minijets which provide the initial conditions necessary to solve the transport equations. The model predicts that in spite of the vast difference between the RHIC and LHC incident energies, once the local equilibrium is reached, the energy densities, the number densities and the temperatures at the two machines may not be very different from each other. The minijet input significantly alters the evolution of the deconfined matter, unless the color field is too strong. For the input parameters used here the equilibration time is estimated to be ∼1\sim 1 fm at RHIC and ∼0.5\sim 0.5 fm at LHC, measured from the instant when the two colliding nuclei have just passed through each other. The temperature at equilibration is found to be ∼250\sim 250 MeV at RHIC and ∼300\sim 300 MeV at LHC.Comment: version to appear in Phys. Rev. C; discussion enlarged to include comparison with other models; conclusions unchanged; 14 single-spaced pages + 8 ps figure

    Fractional statistic

    Full text link
    We improve Haldane's formula which gives the number of configurations for NN particles on dd states in a fractional statistic defined by the coupling g=l/mg=l/m. Although nothing is changed in the thermodynamic limit, the new formula makes sense for finite N=pm+rN=pm+r with pp integer and 0<r≤m.0<r\leq m. A geometrical interpretation of fractional statistic is given in terms of ''composite particles''.Comment: flatex hald.tex, 3 files Submitted to: Phys. Rev.

    Large zero-field cooled exchange-bias in bulk Mn2PtGa

    Full text link
    We report a large exchange-bias (EB) effect after zero-field cooling the new tetragonal Heusler compound Mn2PtGa from the paramagnetic state. The first-principle calculation and the magnetic measurements reveal that Mn2PtGa orders ferrimagnetically with some ferromagnetic (FM) inclusions. We show that ferrimagnetic (FI) ordering is essential to isothermally induce the exchange anisotropy needed for the zero-field cooled (ZFC) EB during the virgin magnetization process. The complex magnetic behavior at low temperatures is characterized by the coexistence of a field induced irreversible magnetic behavior and a spin-glass-like phase. The field induced irreversibility originates from an unusual first-order FI to antiferromagnetic transition, whereas, the spin-glass like state forms due to the existence of anti-site disorder intrinsic to the material.Comment: 5 pages, 4 figures, supplementary material included in a separate file; accepted for publication in PR
    • …
    corecore