31,482 research outputs found

    Resummation Effects in Vector-Boson and Higgs Associated Production

    Get PDF
    Fixed-order QCD radiative corrections to the vector-boson and Higgs associated production channels, pp -> VH (V=W, Z), at hadron colliders are well understood. We combine higher order perturbative QCD calculations with soft-gluon resummation of both threshold logarithms and logarithms which are important at low transverse momentum of the VH pair. We study the effects of both types of logarithms on the scale dependence of the total cross section and on various kinematic distributions. The next-to-next-to-next-to-leading logarithmic (NNNLL) resummed total cross sections at the LHC are almost identical to the fixed-order perturbative next-to-next-to-leading order (NNLO) rates, indicating the excellent convergence of the perturbative QCD series. Resummation of the VH transverse momentum (p_T) spectrum provides reliable results for small values of p_T and suggests that implementing a jet-veto will significantly decrease the cross sections.Comment: 25 pages, references update

    Acute Liver Failure Secondary to Hemophagocytic Lymphohistiocytosis during Pregnancy.

    Get PDF
    Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of excessive immune activation that mimics and occurs with other systemic diseases. A 35-year-old female presented with signs of viral illness at 13 weeks of pregnancy and progressed to acute liver failure (ALF). We discuss the diagnosis of HLH and Kikuchi-Fujimoto (KF) lymphadenitis in the context of pregnancy and ALF. HLH may respond to comorbid disease-specific therapy, and more toxic treatment can be avoided

    Post-Newtonian Models of Binary Neutron Stars

    Get PDF
    Using an energy variational method, we calculate quasi-equilibrium configurations of binary neutron stars modeled as compressible triaxial ellipsoids obeying a polytropic equation of state. Our energy functional includes terms both for the internal hydrodynamics of the stars and for the external orbital motion. We add the leading post-Newtonian (PN) corrections to the internal and gravitational energies of the stars, and adopt hybrid orbital terms which are fully relativistic in the test-mass limit and always accurate to PN order. The total energy functional is varied to find quasi-equilibrium sequences for both corotating and irrotational binaries in circular orbits. We examine how the orbital frequency at the innermost stable circular orbit depends on the polytropic index n and the compactness parameter GM/Rc^2. We find that, for a given GM/Rc^2, the innermost stable circular orbit along an irrotational sequence is about 17% larger than the innermost secularly stable circular orbit along the corotating sequence when n=0.5, and 20% larger when n=1. We also examine the dependence of the maximum neutron star mass on the orbital frequency and find that, if PN tidal effects can be neglected, the maximum equilibrium mass increases as the orbital separation decreases.Comment: 53 pages, LaTex, 9 figures as 10 postscript files, accepted by Phys. Rev. D, replaced version contains updated reference

    General-relativistic coupling between orbital motion and internal degrees of freedom for inspiraling binary neutron stars

    Get PDF
    We analyze the coupling between the internal degrees of freedom of neutron stars in a close binary, and the stars' orbital motion. Our analysis is based on the method of matched asymptotic expansions and is valid to all orders in the strength of internal gravity in each star, but is perturbative in the ``tidal expansion parameter'' (stellar radius)/(orbital separation). At first order in the tidal expansion parameter, we show that the internal structure of each star is unaffected by its companion, in agreement with post-1-Newtonian results of Wiseman (gr-qc/9704018). We also show that relativistic interactions that scale as higher powers of the tidal expansion parameter produce qualitatively similar effects to their Newtonian counterparts: there are corrections to the Newtonian tidal distortion of each star, both of which occur at third order in the tidal expansion parameter, and there are corrections to the Newtonian decrease in central density of each star (Newtonian ``tidal stabilization''), both of which are sixth order in the tidal expansion parameter. There are additional interactions with no Newtonian analogs, but these do not change the central density of each star up to sixth order in the tidal expansion parameter. These results, in combination with previous analyses of Newtonian tidal interactions, indicate that (i) there are no large general-relativistic crushing forces that could cause the stars to collapse to black holes prior to the dynamical orbital instability, and (ii) the conventional wisdom with respect to coalescing binary neutron stars as sources of gravitational-wave bursts is correct: namely, the finite-stellar-size corrections to the gravitational waveform will be unimportant for the purpose of detecting the coalescences.Comment: 22 pages, 2 figures. Replaced 13 July: proof corrected, result unchange

    Boundary Critical Phenomena in SU(3) "Spin" Chains

    Full text link
    SU(3)-invariant "spin" chains with a single impurity, such as a modified exchange coupling on one link, are analyzed using boundary conformal field theory techniques. These chains are equivalent to a special case of the "tJV" model, i.e. the t-J model with a nearest neighbour repulsion added. In the continuum limit they are equivalent to two free bosons at a special value of the compactification radii. The SU(3) symmetry, which is made explicit in this formulation, provides insight into the exact solution of a non-trivial boundary critical point found earlier in another formulation of this model as a theory of quantum Brownian motion.Comment: 19 pages, Rev Te

    Multi-wavelength Stellar Polarimetry of the Filamentary Cloud IC5146: I. Dust Properties

    Full text link
    We present optical and near-infrared stellar polarization observations toward the dark filamentary clouds associated with IC5146. The data allow us to investigate the dust properties (this paper) and the magnetic field structure (Paper II). A total of 2022 background stars were detected in RcR_{c}-, i′i'-, HH-, and/or KK-bands to AV≲25A_V \lesssim 25 mag. The ratio of the polarization percentage at different wavelengths provides an estimate of λmax\lambda_{max}, the wavelength of peak polarization, which is an indicator of the small-size cutoff of the grain size distribution. The grain size distribution seems to significantly change at AV∼A_V \sim 3 mag, where both the average and dispersion of PRc/PHP_{R_c}/P_{H} decrease. In addition, we found λmax\lambda_{max} ∼\sim 0.6-0.9 μ\mum for AV>2.5A_V>2.5 mag, which is larger than the ∼\sim 0.55 μ\mum in the general ISM, suggesting that grain growth has already started in low AVA_V regions. Our data also reveal that polarization efficiency (PE ≡Pλ/AV\equiv P_{\lambda}/A_V) decreases with AVA_V as a power-law in RcR_c-, i′i'-, and KK-bands with indices of -0.71±\pm0.10, -1.23±\pm0.10 and -0.53±\pm0.09. However, HH-band data show a power index change; the PE varies with AVA_V steeply (index of -0.95±\pm0.30) when AV<2.88±0.67A_V < 2.88\pm0.67 mag but softly (index of -0.25±\pm0.06) for greater AVA_V values. The soft decay of PE in high AVA_V regions is consistent with the Radiative Aligned Torque model, suggesting that our data trace the magnetic field to AV∼20A_V \sim 20 mag. Furthermore, the breakpoint found in HH-band is similar to the AVA_V where we found the PRc/PHP_{R_c}/P_{H} dispersion significantly decreased. Therefore, the flat PE-AVA_V in high AVA_V regions implies that the power index changes result from additional grain growth.Comment: 31 pages, 17 figures, and 3 tables; accepted for publication in Ap

    Innermost Stable Circular Orbit of Inspiraling Neutron-Star Binaries: Tidal Effects, Post-Newtonian Effects and the Neutron-Star Equation of State

    Get PDF
    We study how the neutron-star equation of state affects the onset of the dynamical instability in the equations of motion for inspiraling neutron-star binaries near coalescence. A combination of relativistic effects and Newtonian tidal effects cause the stars to begin their final, rapid, and dynamically-unstable plunge to merger when the stars are still well separated and the orbital frequency is ≈\approx 500 cycles/sec (i.e. the gravitational wave frequency is approximately 1000 Hz). The orbital frequency at which the dynamical instability occurs (i.e. the orbital frequency at the innermost stable circular orbit) shows modest sensitivity to the neutron-star equation of state (particularly the mass-radius ratio, M/RoM/R_o, of the stars). This suggests that information about the equation of state of nuclear matter is encoded in the gravitational waves emitted just prior to the merger.Comment: RevTeX, to appear in PRD, 8 pages, 4 figures include

    Modulation of the high mobility two-dimensional electrons in Si/SiGe using atomic-layer-deposited gate dielectric

    Full text link
    Metal-oxide-semiconductor field-effect transistors (MOSFET's) using atomic-layer-deposited (ALD) Al2_2O3_3 as the gate dielectric are fabricated on the Si/Si1−x_{1-x}Gex_x heterostructures. The low-temperature carrier density of a two-dimensional electron system (2DES) in the strained Si quantum well can be controllably tuned from 2.5×1011\times10^{11}cm−2^{-2} to 4.5×1011\times10^{11}cm−2^{-2}, virtually without any gate leakage current. Magnetotransport data show the homogeneous depletion of 2DES under gate biases. The characteristic of vertical modulation using ALD dielectric is shown to be better than that using Schottky barrier or the SiO2_2 dielectric formed by plasma-enhanced chemical-vapor-deposition(PECVD).Comment: 3 pages Revtex4, 4 figure
    • …
    corecore