206 research outputs found
Stellar Astrophysics and Exoplanet Science with the Maunakea Spectroscopic Explorer (MSE)
The Maunakea Spectroscopic Explorer (MSE) is a planned 11.25-m aperture
facility with a 1.5 square degree field of view that will be fully dedicated to
multi-object spectroscopy. A rebirth of the 3.6m Canada-France-Hawaii Telescope
on Maunakea, MSE will use 4332 fibers operating at three different resolving
powers (R ~ 2500, 6000, 40000) across a wavelength range of 0.36-1.8mum, with
dynamical fiber positioning that allows fibers to match the exposure times of
individual objects. MSE will enable spectroscopic surveys with unprecedented
scale and sensitivity by collecting millions of spectra per year down to
limiting magnitudes of g ~ 20-24 mag, with a nominal velocity precision of ~100
m/s in high-resolution mode. This white paper describes science cases for
stellar astrophysics and exoplanet science using MSE, including the discovery
and atmospheric characterization of exoplanets and substellar objects, stellar
physics with star clusters, asteroseismology of solar-like oscillators and
opacity-driven pulsators, studies of stellar rotation, activity, and
multiplicity, as well as the chemical characterization of AGB and extremely
metal-poor stars.Comment: 31 pages, 11 figures; To appear as a chapter for the Detailed Science
Case of the Maunakea Spectroscopic Explore
Associations of airway inflammation and responsiveness markers in non asthmatic subjects at start of apprenticeship
<p>Abstract</p> <p>Background</p> <p>Bronchial Hyperresponsiveness (BHR) is considered a hallmark of asthma. Other methods are helpful in epidemiological respiratory health studies including Fractional Exhaled Nitric Oxide (FENO) and Eosinophils Percentage (EP) in nasal lavage fluid measuring markers for airway inflammation along with the Forced Oscillatory Technique measuring Airway resistance (AR). Can their outcomes discriminate profiles of respiratory health in healthy subjects starting apprenticeship in occupations with a risk of asthma?</p> <p>Methods</p> <p>Rhinoconjunctivitis, asthma-like symptoms, FEV1 and AR post-Methacholine Bronchial Challenge (MBC) test results, FENO measurements and EP were all investigated in apprentice bakers, pastry-makers and hairdressers not suffering from asthma. Multiple Correspondence Analysis (MCA) was simultaneously conducted in relation to these groups and this generated a synthetic partition (EI). Associations between groups of subjects based on BHR and EI respectively, as well as risk factors, symptoms and investigations were also assessed.</p> <p>Results</p> <p>Among the 441 apprentice subjects, 45 (10%) declared rhinoconjunctivitis-like symptoms, 18 (4%) declared asthma-like symptoms and 26 (6%) suffered from BHR. The mean increase in AR post-MBC test was 21% (sd = 20.8%). The median of FENO values was 12.6 ppb (2.6-132 range). Twenty-six subjects (6.7%) had EP exceeding 14%. BHR was associated with atopy (p < 0.01) and highest FENO values (p = 0.09). EI identified 39 subjects with eosinophilic inflammation (highest values of FENO and eosinophils), which was associated with BHR and atopy.</p> <p>Conclusions</p> <p>Are any of the identified markers predictive of increased inflammatory responsiveness or of development of symptoms caused by occupational exposures? Analysis of population follow-up will attempt to answer this question.</p
Functional and genetic analysis in type 2 diabetes of Liver X receptor alleles – a cohort study
<p>Abstract</p> <p>Background</p> <p>Liver X receptor alpha <it>(LXRA</it>) and beta (<it>LXRB</it>) regulate glucose and lipid homeostasis in model systems but their importance in human physiology is poorly understood. This project aimed to determine whether common genetic variations in <it>LXRA </it>and <it>LXRB </it>associate with type 2 diabetes (T2D) and quantitative measures of glucose homeostasis, and, if so, reveal the underlying mechanisms.</p> <p>Methods</p> <p>Eight common single nucleotide polymorphisms in <it>LXRA </it>and <it>LXRB </it>were analyzed for association with T2D in one French cohort (N = 988 cases and 941 controls), and for association with quantitative measures reflecting glucose homeostasis in two non-diabetic population-based samples comprising N = 697 and N = 1344 adults. Investigated quantitative phenotypes included fasting plasma glucose, serum insulin, and HOMA<sub>IR </sub>as measure of overall insulin resistance. An oral glucose tolerance test was performed in N = 1344 of adults. The two alleles of the proximal <it>LXRB </it>promoter, differing only at the SNP rs17373080, were cloned into reporter vectors and transiently transfected, whereupon allele-specific luciferase activity was measured. rs17373080 overlapped, according to <it>in silico </it>analysis, with a binding site for Nuclear factor 1 (NF1). Promoter alleles were tested for interaction with NF1 using direct DNA binding and transactivation assays.</p> <p>Results</p> <p>Genotypes at two <it>LXRB </it>promoter SNPs, rs35463555 and rs17373080, associated nominally with T2D (P values 0.047 and 0.026). No <it>LXRA </it>or <it>LXRB </it>SNP associated with quantitative measures reflecting glucose homeostasis. The rs17373080 C allele displayed higher basal transcription activity (P value < 0.05). The DNA-mobility shift assay indicated that oligonucleotides corresponding to either rs17373080 allele bound NF1 transcription factors in whole cell extracts to the same extent. Different NF1 family members showed different capacity to transactivate the <it>LXRB </it>gene promoter, but there was no difference between promoter alleles in NF1 induced transactivation activity.</p> <p>Conclusion</p> <p>Variations in the <it>LXRB </it>gene promoter may be part of the aetiology of T2D. However, the association between <it>LXRB </it>rs35463555 and rs17373080, and T2D are preliminary and needs to be investigated in additional larger cohorts. Common genetic variation in <it>LXRA </it>is unlikely to affect the risk of developing T2D or quantitative phenotypes related to glucose homeostasis.</p
- …