881 research outputs found

    Self-Attracting Walk on Lattices

    Full text link
    We have studied a model of self-attracting walk proposed by Sapozhnikov using Monte Carlo method. The mean square displacement ∼t2ν \sim t^{2\nu} and the mean number of visited sites ∼tk \sim t^{k} are calculated for one-, two- and three-dimensional lattice. In one dimension, the walk shows diffusive behaviour with ν=k=1/2\nu=k=1/2. However, in two and three dimension, we observed a non-universal behaviour, i.e., the exponent ν\nu varies continuously with the strength of the attracting interaction.Comment: 6 pages, latex, 6 postscript figures, Submitted J.Phys.

    Minimum spanning trees on random networks

    Full text link
    We show that the geometry of minimum spanning trees (MST) on random graphs is universal. Due to this geometric universality, we are able to characterise the energy of MST using a scaling distribution (P(ϵ)P(\epsilon)) found using uniform disorder. We show that the MST energy for other disorder distributions is simply related to P(ϵ)P(\epsilon). We discuss the relationship to invasion percolation (IP), to the directed polymer in a random media (DPRM) and the implications for the broader issue of universality in disordered systems.Comment: 4 pages, 3 figure

    Structural Properties of Self-Attracting Walks

    Full text link
    Self-attracting walks (SATW) with attractive interaction u > 0 display a swelling-collapse transition at a critical u_{\mathrm{c}} for dimensions d >= 2, analogous to the \Theta transition of polymers. We are interested in the structure of the clusters generated by SATW below u_{\mathrm{c}} (swollen walk), above u_{\mathrm{c}} (collapsed walk), and at u_{\mathrm{c}}, which can be characterized by the fractal dimensions of the clusters d_{\mathrm{f}} and their interface d_{\mathrm{I}}. Using scaling arguments and Monte Carlo simulations, we find that for u<u_{\mathrm{c}}, the structures are in the universality class of clusters generated by simple random walks. For u>u_{\mathrm{c}}, the clusters are compact, i.e. d_{\mathrm{f}}=d and d_{\mathrm{I}}=d-1. At u_{\mathrm{c}}, the SATW is in a new universality class. The clusters are compact in both d=2 and d=3, but their interface is fractal: d_{\mathrm{I}}=1.50\pm0.01 and 2.73\pm0.03 in d=2 and d=3, respectively. In d=1, where the walk is collapsed for all u and no swelling-collapse transition exists, we derive analytical expressions for the average number of visited sites and the mean time to visit S sites.Comment: 15 pages, 8 postscript figures, submitted to Phys. Rev.

    Infinite-cluster geometry in central-force networks

    Full text link
    We show that the infinite percolating cluster (with density P_inf) of central-force networks is composed of: a fractal stress-bearing backbone (Pb) and; rigid but unstressed ``dangling ends'' which occupy a finite volume-fraction of the lattice (Pd). Near the rigidity threshold pc, there is then a first-order transition in P_inf = Pd + Pb, while Pb is second-order with exponent Beta'. A new mean field theory shows Beta'(mf)=1/2, while simulations of triangular lattices give Beta'_tr = 0.255 +/- 0.03.Comment: 6 pages, 4 figures, uses epsfig. Accepted for publication in Physical Review Letter

    Random manifolds in non-linear resistor networks: Applications to varistors and superconductors

    Full text link
    We show that current localization in polycrystalline varistors occurs on paths which are, usually, in the universality class of the directed polymer in a random medium. We also show that in ceramic superconductors, voltage localizes on a surface which maps to an Ising domain wall. The emergence of these manifolds is explained and their structure is illustrated using direct solution of non-linear resistor networks

    Complete wetting in the three-dimensional transverse Ising model

    Get PDF
    We consider a three-dimensional Ising model in a transverse magnetic field, hh and a bulk field HH. An interface is introduced by an appropriate choice of boundary conditions. At the point (H=0,h=0)(H=0,h=0) spin configurations corresponding to different positions of the interface are degenerate. By studying the phase diagram near this multiphase point using quantum-mechanical perturbation theory we show that that quantum fluctuations, controlled by hh, split the multiphase degeneracy giving rise to an infinite sequence of layering transitions.Comment: 16 pages (revtex) including 8 figs; to appear in J. Stat. Phy

    Swelling-collapse transition of self-attracting walks

    Full text link
    We study the structural properties of self-attracting walks in d dimensions using scaling arguments and Monte Carlo simulations. We find evidence for a transition analogous to the \Theta transition of polymers. Above a critical attractive interaction u_c, the walk collapses and the exponents \nu and k, characterising the scaling with time t of the mean square end-to-end distance ~ t^{2 \nu} and the average number of visited sites ~ t^k, are universal and given by \nu=1/(d+1) and k=d/(d+1). Below u_c, the walk swells and the exponents are as with no interaction, i.e. \nu=1/2 for all d, k=1/2 for d=1 and k=1 for d >= 2. At u_c, the exponents are found to be in a different universality class.Comment: 6 pages, 5 postscript figure

    Combinatorial models of rigidity and renormalization

    Full text link
    We first introduce the percolation problems associated with the graph theoretical concepts of (k,l)(k,l)-sparsity, and make contact with the physical concepts of ordinary and rigidity percolation. We then devise a renormalization transformation for (k,l)(k,l)-percolation problems, and investigate its domain of validity. In particular, we show that it allows an exact solution of (k,l)(k,l)-percolation problems on hierarchical graphs, for k≤l<2kk\leq l<2k. We introduce and solve by renormalization such a model, which has the interesting feature of showing both ordinary percolation and rigidity percolation phase transitions, depending on the values of the parameters.Comment: 22 pages, 6 figure

    Stressed backbone and elasticity of random central-force systems

    Full text link
    We use a new algorithm to find the stress-carrying backbone of ``generic'' site-diluted triangular lattices of up to 10^6 sites. Generic lattices can be made by randomly displacing the sites of a regular lattice. The percolation threshold is Pc=0.6975 +/- 0.0003, the correlation length exponent \nu =1.16 +/- 0.03 and the fractal dimension of the backbone Db=1.78 +/- 0.02. The number of ``critical bonds'' (if you remove them rigidity is lost) on the backbone scales as L^{x}, with x=0.85 +/- 0.05. The Young's modulus is also calculated.Comment: 5 pages, 5 figures, uses epsfi

    Fast Algorithms For Josephson Junction Arrays : Bus--bars and Defects

    Get PDF
    We critically review the fast algorithms for the numerical study of two--dimensional Josephson junction arrays and develop the analogy of such systems with electrostatics. We extend these procedures to arrays with bus--bars and defects in the form of missing bonds. The role of boundaries and of the guage choice in determing the Green's function of the system is clarified. The extension of the Green's function approach to other situations is also discussed.Comment: Uuencoded 1 Revtex file (11 Pages), 3 Figures : Postscript Uuencode
    • …
    corecore