29 research outputs found

    Differential Impact of Tetratricopeptide Repeat Proteins on the Steroid Hormone Receptors

    Get PDF
    Tetratricopeptide repeat (TPR) motif containing co-chaperones of the chaperone Hsp90 are considered control modules that govern activity and specificity of this central folding platform. Steroid receptors are paradigm clients of Hsp90. The influence of some TPR proteins on selected receptors has been described, but a comprehensive analysis of the effects of TPR proteins on all steroid receptors has not been accomplished yet.We compared the influence of the TPR proteins FK506 binding proteins 51 and 52, protein phosphatase-5, C-terminus of Hsp70 interacting protein, cyclophillin 40, hepatitis-virus-B X-associated protein-2, and tetratricopeptide repeat protein-2 on all six steroid hormone receptors in a homogeneous mammalian cell system. To be able to assess each cofactor's effect on the transcriptional activity of on each steroid receptor we employed transient transfection in a reporter gene assay. In addition, we evaluated the interactions of the TPR proteins with the receptors and components of the Hsp90 chaperone heterocomplex by coimmunoprecipitation. In the functional assays, corticosteroid and progesterone receptors displayed the most sensitive and distinct reaction to the TPR proteins. Androgen receptor's activity was moderately impaired by most cofactors, whereas the Estrogen receptors' activity was impaired by most cofactors only to a minor degree. Second, interaction studies revealed that the strongly receptor-interacting co-chaperones were all among the inhibitory proteins. Intriguingly, the TPR-proteins also differentially co-precipitated the heterochaperone complex components Hsp90, Hsp70, and p23, pointing to differences in their modes of action.The results of this comprehensive study provide important insight into chaperoning of diverse client proteins via the combinatorial action of (co)-chaperones. The differential effects of the TPR proteins on steroid receptors bear on all physiological processes related to steroid hormone activity

    Role of flm Locus in Mesophilic Aeromonas Species Adherence

    No full text
    The adherence mechanism of Aeromonas caviae Sch3N to HEp-2 cells was initially investigated through four mini-Tn5 mutants that showed a 10-fold decrease in adherence. These mutants lost motility, flagella, and their lipopolysaccharide (LPS) O antigen (O-Ag). Three genes, flmB-neuA-flmD, were found to be interrupted by the transposon insertions; additionally, two other genes, one lying upstream (flmA) and one downstream (neuB), were found to be clustered in the same operon. While the flmA and flmB genes were present in all mesophilic Aeromonas spp. (A. hydrophila, A. caviae, A. veronii bv. veronii, and A. veronii bv. sobria) tested, this was not the case for the neuA-flmD-neuB genes. Construction and characterization of flmB insertion mutants in five other mesophilic Aeromonas strains revealed the loss of motility, flagella, and adherence but did not alter the LPS composition of these strains. Taking the above findings into consideration, we conclude (i) that flagella and possibly the LPS O-Ag are involved in the adherence of the mesophilic Aeromonas to human epithelial cells; (ii) flmA and flmB are genes widely distributed in the mesophilic Aeromonas and are involved in flagella assembly, and thus adherence; and (iii) in A. caviae Sch3N the flmA and flmB genes are found in a putative operon together with neuA, flmD, and neuB and are involved in LPS O-Ag biosynthesis and probably have a role in flagellum assembly
    corecore