416 research outputs found

    Alternating Sign Matrices and Hypermatrices, and a Generalization of Latin Square

    Full text link
    An alternating sign matrix, or ASM, is a (0,±1)(0, \pm 1)-matrix where the nonzero entries in each row and column alternate in sign. We generalize this notion to hypermatrices: an n×n×nn\times n\times n hypermatrix A=[aijk]A=[a_{ijk}] is an {\em alternating sign hypermatrix}, or ASHM, if each of its planes, obtained by fixing one of the three indices, is an ASM. Several results concerning ASHMs are shown, such as finding the maximum number of nonzeros of an n×n×nn\times n\times n ASHM, and properties related to Latin squares. Moreover, we investigate completion problems, in which one asks if a subhypermatrix can be completed (extended) into an ASHM. We show several theorems of this type.Comment: 39 page

    Loopy, Hankel, and Combinatorially Skew-Hankel Tournaments

    Full text link
    We investigate tournaments with a specified score vector having additional structure: loopy tournaments in which loops are allowed, Hankel tournaments which are tournaments symmetric about the Hankel diagonal (the anti-diagonal), and combinatorially skew-Hankel tournaments which are skew-symmetric about the Hankel diagonal. In each case, we obtain necessary and sufficient conditions for existence, algorithms for construction, and switches which allow one to move from any tournament of its type to any other, always staying within the defined type

    A generalization of Alternating Sign Matrices

    Full text link
    In alternating sign matrices the first and last nonzero entry in each row and column is specified to be +1. Such matrices always exist. We investigate a generalization by specifying independently the sign of the first and last nonzero entry in each row and column to be either a +1 or a -1. We determine necessary and sufficient conditions for such matrices to exist.Comment: 14 page

    2-MULTIGRAPHS(Algebraic Combinatorial Theory)

    Get PDF

    On the t-Term Rank of a Matrix

    Full text link
    For t a positive integer, the t-term rank of a (0,1)-matrix A is defined to be the largest number of 1s in A with at most one 1 in each column and at most t 1s in each row. Thus the 1-term rank is the ordinary term rank. We generalize some basic results for the term rank to the t-term rank, including a formula for the maximum term rank over a nonempty class of (0,1)-matrices with the the same row sum and column sum vectors. We also show the surprising result that in such a class there exists a matrix which realizes all of the maximum terms ranks between 1 and t.Comment: 18 page
    corecore