20 research outputs found

    Involvement of Lsp, a Member of the LraI-Lipoprotein Family in Streptococcus pyogenes, in Eukaryotic Cell Adhesion and Internalization

    No full text
    Three open reading frames (ORFs) were identified by a genome walking strategy in the genomes of serotype M49 group A streptococcal (GAS) strains CS101 and 591. These ORFs were located between the mga core regulon and the dipeptide permease operon. The deduced amino acid (aa) sequences contained signature sequences indicative of a lipoprotein (306 aa), an intracellular protein (823 aa), and a secreted peptide (66 aa), respectively. ORF1 (named Lsp for lipoprotein of Streptococcus pyogenes) and ORF2 exhibited a high degree of homology to the lmb/ORF2 genes of S. agalactiae (B. Spellerberg et al., Infect. Immun. 67:871-878, 1999). The three ORFs were found to be present in each of the 27 GAS serotype strains tested. Transcription analysis revealed a polycistronic lsp/ORF2 and a monocistronic ORF3 message that were detected primarily at the transition from exponential to stationary growth phase. lsp and ORF2 mutants, ORF2- and ORF3-luciferase reporter fusions, and antiserum against recombinant Lsp were produced to examine the biological role of these genes. Although high Zn(2+) and Cu(2+) ion concentrations decreased lsp operon expression, Lsp did not transport divalent cations as described for other LraI-type operons. The lsp mutant had reduced fibronectin binding. Although no direct binding of Lsp to fibronectin could be demonstrated, the lsp mutant showed decreased transcription of prtF2 encoding the fibronectin-binding protein F2. Both the lsp and ORF2 mutants showed decreased laminin binding. Adherence to and internalization into A549 epithelial cells of both mutants was reduced without a detectable effect on eukaryotic cell viability. The transcription of a number of virulence factors was altered in the lsp mutants and ORF2 mutants. The changes in laminin binding and eukaryotic cell internalization could be explained by changes in transcription of speB (cysteine protease) and/or the global regulators mga, csrRS, and nra

    Carob pulp as raw material for production of the biocontrol agent P. agglomerans PBC-1

    No full text
    Large-scale production has been the major obstacle to the success of many biopesticides. The spreading of microbial biocontrol agents against postharvest disease, as a safe and environmentally friendly alternative to synthetic fungicides, is quite dependent on their industrial mass production from low-cost raw materials. Considerable interest has been shown in using agricultural waste products and by-products from food industry as nitrogen and carbon sources. In this work, carob pulp aqueous extracts were used as carbon source in the production of the biocontrol agent Pantoea agglomerans PBC-1. Optimal sugar extraction was achieved at a solid/liquid ratio of 1:10 (w/v), at 25°C, for 1 h. Batch experiments were performed in shake flasks, at different concentrations and in stirred reactors at two initial inoculums concentrations, 106 and 107 cfu ml−1. The initial sugar concentration of 5 g l−1 allowed rapid growth (0.16 h−1) and high biomass productivity (0.28 g l−1 h−1) and was chosen as the value for use in stirred reactor experiments. After 22 and 32 h of fermentation the viable population reached was 3.2 × 109 and 6.2 × 109 cfu ml−1 in the fermenter inoculated at 106 cfu ml−1 and 2.7 × 109 and 6.7 × 109 cfu ml−1 in the bioreactor inoculated at 107 cfu ml−1. A 78% reduction of the pathogen incidence was achieved with PBC-1 at 1 × 108 cfu ml−1, grown in medium with carob extracts, on artificially wounded apples stored after 7 days at 25°C against P. expansum
    corecore