45 research outputs found

    TLR1/2, TLR7, and TLR9 Signals Directly Activate Human Peripheral Blood Naive and Memory B Cell Subsets to Produce Cytokines, Chemokines, and Hematopoietic Growth Factors

    Get PDF
    Recently, it has been reported that using multiple signals, murine and human B cells secrete several cytokines with pro-inflammatory and immunoregulatory properties. We present the first comprehensive analysis of 24 cytokines, chemokines, and hematopoietic growth factors production by purified human peripheral blood B cells (CD19+), and naive (CD19+CD27-) and memory (CD19+CD27+) B cells in response to direct and exclusive signaling provided by toll-like receptor (TLR) ligands Pam3CSK (TLR1/TLR2), Imiquimod (TLR7), and GpG-ODN2006 (TLR9). All three TLR ligands stimulated B cells (CD19+) to produce cytokines IL-1α, IL-1β, IL-6, TNF-α, IL-13, and IL-10, and chemokines MIP-1α, MIP-1β, MCP-1, IP-10, and IL-8. However, GM-CSF and G-CSF production was predominantly induced by TLR2 agonist. Most cytokines/chemokines/hematopoietic growth factors were predominantly or exclusively produced by memory B cells, and in general, TLR2 signal was more powerful than signal provided viaTLR7 and TLR9. No significant secretion of eotaxin, IFN-α, IFN-γ, IL-2, IL-3, IL-4, IL-5, IL-7, IL-15, IL-17, IL-12p40, IL-12p70, and TNF-β (lymphotoxin) was observed. These data demonstrate that human B cells can be directly activated viaTLR1/TLR2, TLR7, and TLR9 to induce secretion of cytokines, chemokines, and hematopoietic growth factors and suggest a role of B cells in immune response against microbial pathogenesis and immune homeostasis

    Toll-Like Receptor Agonists Synergize with CD40L to Induce Either Proliferation or Plasma Cell Differentiation of Mouse B Cells

    Get PDF
    In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response

    Lipid Motif of a Bacterial Antigen Mediates Immune Responses via TLR2 Signaling

    Get PDF
    The cross-talk between the innate and the adaptive immune system is facilitated by the initial interaction of antigen with dendritic cells. As DCs express a large array of TLRs, evidence has accumulated that engagement of these molecules contributes to the activation of adaptive immunity. We have evaluated the immunostimulatory role of the highly-conserved outer membrane lipoprotein P6 from non-typeable Haemophilus influenzae (NTHI) to determine whether the presence of the lipid motif plays a critical role on its immunogenicity. We undertook a systematic analysis of the role that the lipid motif plays in the activation of DCs and the subsequent stimulation of antigen-specific T and B cells. To facilitate our studies, recombinant P6 protein that lacked the lipid motif was generated. Mice immunized with non-lipidated rP6 were unable to elicit high titers of anti-P6 Ig. Expression of the lipid motif on P6 was also required for proliferation and cytokine secretion by antigen-specific T cells. Upregulation of T cell costimulatory molecules was abrogated in DCs exposed to non-lipidated rP6 and in TLR2−/− DCs exposed to native P6, thereby resulting in diminished adaptive immune responses. Absence of either the lipid motif on the antigen or TLR2 expression resulted in diminished cytokine production from stimulated DCs. Collectively; our data suggest that the lipid motif of the lipoprotein antigen is essential for triggering TLR2 signaling and effective stimulation of APCs. Our studies establish the pivotal role of a bacterial lipid motif on activating both innate and adaptive immune responses to an otherwise poorly immunogenic protein antigen

    Linear and Branched Glyco-Lipopeptide Vaccines Follow Distinct Cross-Presentation Pathways and Generate Different Magnitudes of Antitumor Immunity

    Get PDF
    Glyco-lipopeptides, a form of lipid-tailed glyco-peptide, are currently under intense investigation as B- and T-cell based vaccine immunotherapy for many cancers. However, the cellular and molecular mechanisms of glyco-lipopeptides (GLPs) immunogenicity and the position of the lipid moiety on immunogenicity and protective efficacy of GLPs remain to be determined.We have constructed two structural analogues of HER-2 glyco-lipopeptide (HER-GLP) by synthesizing a chimeric peptide made of one universal CD4(+) epitope (PADRE) and one HER-2 CD8(+) T-cell epitope (HER(420-429)). The C-terminal end of the resulting CD4-CD8 chimeric peptide was coupled to a tumor carbohydrate B-cell epitope, based on a regioselectively addressable functionalized templates (RAFT), made of four alpha-GalNAc molecules. The resulting HER glyco-peptide (HER-GP) was then linked to a palmitic acid moiety, attached either at the N-terminal end (linear HER-GLP-1) or in the middle between the CD4+ and CD8+ T cell epitopes (branched HER-GLP-2). We have investigated the uptake, processing and cross-presentation pathways of the two HER-GLP vaccine constructs, and assessed whether the position of linkage of the lipid moiety would affect the B- and T-cell immunogenicity and protective efficacy. Immunization of mice revealed that the linear HER-GLP-1 induced a stronger and longer lasting HER(420-429)-specific IFN-gamma producing CD8(+) T cell response, while the branched HER-GLP-2 induced a stronger tumor-specific IgG response. The linear HER-GLP-1 was taken up easily by dendritic cells (DCs), induced stronger DCs maturation and produced a potent TLR- 2-dependent T-cell activation. The linear and branched HER-GLP molecules appeared to follow two different cross-presentation pathways. While regression of established tumors was induced by both linear HER-GLP-1 and branched HER-GLP-2, the inhibition of tumor growth was significantly higher in HER-GLP-1 immunized mice (p<0.005).These findings have important implications for the development of effective GLP based immunotherapeutic strategies against cancers

    Regulatory cells in allergen-specific immunotherapy

    Full text link
    Allergen-specific immunotherapy (SIT) is currently the best available curative treatment in allergies and has been used for the treatment of patients for the past 100 years. The formation of a Th2 cell predominant inflammation in addition to production of allergen-specific IgE, the attraction of proinflammatory cells and the degranulation of effector cells, such as mast cells, are essential mechanisms in allergy development. Tregs aim to diminish these effects by IL-10- and TGF-β-mediated anti-inflammatory reactions and therefore are one of the main targets in SIT. The induction of allergen tolerance is the key to successful SIT. With a special focus on Tregs, this review aims to clarify what is currently known about allergy development and the mode of action in allergen-SIT, which helps to develop further therapeutic strategies in the fight against allergic diseases
    corecore