85 research outputs found

    The effects of the pre-pulse on capillary discharge extreme ultraviolet laser

    Full text link
    In the past few years collisionally pumped extreme ultraviolet (XUV) lasers utilizing a capillary discharge were demonstrated. An intense current pulse is applied to a gas filled capillary, inducing magnetic collapse (Z-pinch) and formation of a highly ionized plasma column. Usually, a small current pulse (pre-pulse) is applied to the gas in order to pre-ionize it prior to the onset of the main current pulse. In this paper we investigate the effects of the pre-pulse on a capillary discharge Ne-like Ar XUV laser (46.9nm). The importance of the pre-pulse in achieving suitable initial conditions of the gas column and preventing instabilities during the collapse is demonstrated. Furthermore, measurements of the amplified spontaneous emission (ASE) properties (intensity, duration) in different pre-pulse currents revealed unexpected sensitivity. Increasing the pre-pulse current by a factor of two caused the ASE intensity to decrease by an order of magnitude - and to nearly disappear. This effect is accompanied by a slight increase in the lasing duration. We attribute this effect to axial flow in the gas during the pre-pulse.Comment: 4 pages, 4 figure

    Isotropic magnetometry with simultaneous excitation of orientation and alignment CPT resonances

    Full text link
    Atomic magnetometers have very high absolute precision and sensitivity to magnetic fields but suffer from a fundamental problem: the vectorial or tensorial interaction of light with atoms leads to "dead zones", certain orientations of magnetic field where the magnetometer loses its sensitivity. We demonstrate a simple polarization modulation scheme that simultaneously creates coherent population trapping (CPT) in orientation and alignment, thereby eliminating dead zones. Using 87^{87}Rb in a 10 Torr buffer gas cell we measure narrow, high-contrast CPT transparency peaks in all orientations and also show absence of systematic effects associated with non-linear Zeeman splitting.Comment: 4 pages, 4 figure

    Measurement of Dicke Narrowing in Electromagnetically Induced Transparency

    Get PDF
    Dicke narrowing is a phenomena that dramatically reduces the Doppler width of spectral lines, due to frequent velocity-changing collisions. A similar phenomena occurs for electromagnetically induced transparency (EIT) resonances, and facilitates ultra-narrow spectral features in room-temperature vapor. We directly measure the Dicke-like narrowing by studying EIT line-shapes as a function of the angle between the pump and the probe beams. The measurements are in good agreement with an analytic theory with no fit parameters. The results show that Dicke narrowing can increase substantially the tolerance of hot-vapor EIT to angular deviations. We demonstrate the importance of this effect for applications such as imaging and spatial solitons using a single-shot imaging experiment, and discuss the implications on the feasibility of storing images in atomic vapor.Comment: Introduction revise

    Theory of Dicke narrowing in coherent population trapping

    Get PDF
    The Doppler effect is one of the dominant broadening mechanisms in thermal vapor spectroscopy. For two-photon transitions one would naively expect the Doppler effect to cause a residual broadening, proportional to the wave-vector difference. In coherent population trapping (CPT), which is a narrow-band phenomenon, such broadening was not observed experimentally. This has been commonly attributed to frequent velocity-changing collisions, known to narrow Doppler-broadened one-photon absorption lines (Dicke narrowing). Here we show theoretically that such a narrowing mechanism indeed exists for CPT resonances. The narrowing factor is the ratio between the atom's mean free path and the wavelength associated with the wave-vector difference of the two radiation fields. A possible experiment to verify the theory is suggested.Comment: 6 pages, 2 figures; Introduction revise

    Ramsey-like measurement of the decoherence rate between Zeeman sub-levels

    Full text link
    Two-photon processes that involve different sub-levels of the ground state of an atom, are highly sensitive to depopulation and decoherence within the ground state. For example, the spectral width of electromagnetically induced transparency resonances in Λ\Lambda-type system, are strongly affected by the ground state depopulation and decoherence rates. We present a direct measurement of decay rates between hyperfine and Zeeman sub-levels in the ground state of 87^{87}Rb vapor. Similar to the relaxation-in-the-dark technique, pumping lasers are used to pre-align the atomic vapor in a well defined quantum state. The free propagation of the atomic state is monitored using a Ramsey-like method. Coherence times in the range 1-10 ms were measured for room temperature atomic vapor. In the range of the experimental parameters used in this study, the dominant process inducing Zeeman decoherence is the spin-exchange collisions between rubidium atoms.Comment: 7 pages, 7 figure

    Experimental demonstration of a technique to generate arbitrary quantum superposition states

    Get PDF
    Using a single, harmonically trapped 9^9Be+^+ ion, we experimentally demonstrate a technique for generation of arbitrary states of a two-level particle confined by a harmonic potential. Rather than engineering a single Hamiltonian that evolves the system to a desired final sate, we implement a technique that applies a sequence of simple operations to synthesize the state

    Hyperfine Coherence in the Presence of Spontaneous Photon Scattering

    Full text link
    The coherence of a hyperfine-state superposition of a trapped 9^{9}Be+^+ ion in the presence of off-resonant light is experimentally studied. It is shown that Rayleigh elastic scattering of photons that does not change state populations also does not affect coherence. Coherence times exceeding the average scattering time of 19 photons are observed. This result implies that, with sufficient control over its parameters, laser light can be used to manipulate hyperfine-state superpositions with very little decoherence.Comment: Letter, 4 figure
    corecore