The Doppler effect is one of the dominant broadening mechanisms in thermal
vapor spectroscopy. For two-photon transitions one would naively expect the
Doppler effect to cause a residual broadening, proportional to the wave-vector
difference. In coherent population trapping (CPT), which is a narrow-band
phenomenon, such broadening was not observed experimentally. This has been
commonly attributed to frequent velocity-changing collisions, known to narrow
Doppler-broadened one-photon absorption lines (Dicke narrowing). Here we show
theoretically that such a narrowing mechanism indeed exists for CPT resonances.
The narrowing factor is the ratio between the atom's mean free path and the
wavelength associated with the wave-vector difference of the two radiation
fields. A possible experiment to verify the theory is suggested.Comment: 6 pages, 2 figures; Introduction revise