425 research outputs found

    Cohomology Groups of Deformations of Line Bundles on Complex Tori

    Full text link
    The cohomology groups of line bundles over complex tori (or abelian varieties) are classically studied invariants of these spaces. In this article, we compute the cohomology groups of line bundles over various holomorphic, non-commutative deformations of complex tori. Our analysis interpolates between two extreme cases. The first case is a calculation of the space of (cohomological) theta functions for line bundles over constant, commutative deformations. The second case is a calculation of the cohomologies of non-commutative deformations of degree-zero line bundles.Comment: 24 pages, exposition improved, typos fixe

    Moduli Stacks of Bundles on Local Surfaces

    Full text link
    We give an explicit groupoid presentation of certain stacks of vector bundles on formal neighborhoods of rational curves inside algebraic surfaces. The presentation involves a M\"obius type action of an automorphism group on a space of extensions.Comment: submitted upon invitation to the 2011 Mirror Symmetry and Tropical Geometry Conference (Cetraro, Italy) volume of the Springer Lecture Notes in Mathematic

    Fredholm Modules on P.C.F. Self-Similar Fractals and their Conformal Geometry

    Full text link
    The aim of the present work is to show how, using the differential calculus associated to Dirichlet forms, it is possible to construct Fredholm modules on post critically finite fractals by regular harmonic structures. The modules are d-summable, the summability exponent d coinciding with the spectral dimension of the generalized laplacian operator associated with the regular harmonic structures. The characteristic tools of the noncommutative infinitesimal calculus allow to define a d-energy functional which is shown to be a self-similar conformal invariant.Comment: 16 page

    Calibrated cycles and T-duality

    Full text link
    For Hitchin's generalised geometries we introduce and analyse the concept of a structured submanifold which encapsulates the classical notion of a calibrated submanifold. Under a suitable integrability condition on the ambient geometry, these generalised calibrated cycles minimise a functional occurring as D-brane energy in type II string theories, involving both so-called NS-NS- and R-R-fields. Further, we investigate the behaviour of calibrated cycles under T-duality and construct non-trivial examples.Comment: 43 pages. v4: formalism and T-duality part considerably expande

    A sigma model field theoretic realization of Hitchin's generalized complex geometry

    Full text link
    We present a sigma model field theoretic realization of Hitchin's generalized complex geometry, which recently has been shown to be relevant in compactifications of superstring theory with fluxes. Hitchin sigma model is closely related to the well known Poisson sigma model, of which it has the same field content. The construction shows a remarkable correspondence between the (twisted) integrability conditions of generalized almost complex structures and the restrictions on target space geometry implied by the Batalin--Vilkovisky classical master equation. Further, the (twisted) classical Batalin--Vilkovisky cohomology is related non trivially to a generalized Dolbeault cohomology.Comment: 28 pages, Plain TeX, no figures, requires AMS font files AMSSYM.DEF and amssym.tex. Typos in eq. 6.19 and some spelling correcte

    Mirror duality and noncommutative tori

    Full text link
    In this paper, we study a mirror duality on a generalized complex torus and a noncommutative complex torus. First, we derive a symplectic version of Riemann condition using mirror duality on ordinary complex tori. Based on this we will find a mirror correspondence on generalized complex tori and generalize the mirror duality on complex tori to the case of noncommutative complex tori.Comment: 22pages, no figure

    Supersymmetric D-branes and calibrations on general N=1 backgrounds

    Full text link
    We study the conditions to have supersymmetric D-branes on general {\cal N}=1 backgrounds with Ramond-Ramond fluxes. These conditions can be written in terms of the two pure spinors associated to the SU(3)\times SU(3) structure on T_M\oplus T^\star_M, and can be split into two parts each involving a different pure spinor. The first involves the integrable pure spinor and requires the D-brane to wrap a generalised complex submanifold with respect to the generalised complex structure associated to it. The second contains the non-integrable pure spinor and is related to the stability of the brane. The two conditions can be rephrased as a generalised calibration condition for the brane. The results preserve the generalised mirror symmetry relating the type IIA and IIB backgrounds considered, giving further evidence for this duality.Comment: 23 pages. Some improvements and clarifications, typos corrected and references added. v3: Version published in JHE

    Energy-Sensitive and "Classical-like" Distances Between Quantum States

    Get PDF
    We introduce the concept of the ``polarized'' distance, which distinguishes the orthogonal states with different energies. We also give new inequalities for the known Hilbert-Schmidt distance between neighbouring states and express this distance in terms of the quasiprobability distributions and the normally ordered moments. Besides, we discuss the distance problem in the framework of the recently proposed ``classical-like'' formulation of quantum mechanics, based on the symplectic tomography scheme. The examples of the Fock, coherent, ``Schroedinger cats,'' squeezed, phase, and thermal states are considered.Comment: 23 pages, LaTex, 2 eps figures, to appear in Physica Script

    Towards mirror symmetry \`a la SYZ for generalized Calabi-Yau manifolds

    Full text link
    Fibrations of flux backgrounds by supersymmetric cycles are investigated. For an internal six-manifold M with static SU(2) structure and mirror \hat{M}, it is argued that the product M x \hat{M} is doubly fibered by supersymmetric three-tori, with both sets of fibers transverse to M and \hat{M}. The mirror map is then realized by T-dualizing the fibers. Mirror-symmetric properties of the fluxes, both geometric and non-geometric, are shown to agree with previous conjectures based on the requirement of mirror symmetry for Killing prepotentials. The fibers are conjectured to be destabilized by fluxes on generic SU(3)xSU(3) backgrounds, though they may survive at type-jumping points. T-dualizing the surviving fibers ensures the exchange of pure spinors under mirror symmetry.Comment: 30 pages, 3 figures, LaTeX; v2: references adde

    Gopakumar-Vafa invariants via vanishing cycles

    Get PDF
    In this paper, we propose an ansatz for defining Gopakumar-Vafa invariants of Calabi-Yau threefolds, using perverse sheaves of vanishing cycles. Our proposal is a modification of a recent approach of Kiem-Li, which is itself based on earlier ideas of Hosono-Saito-Takahashi. We conjecture that these invariants are equivalent to other curve-counting theories such as Gromov-Witten theory and Pandharipande-Thomas theory. Our main theorem is that, for local surfaces, our invariants agree with PT invariants for irreducible one-cycles. We also give a counter-example to the Kiem-Li conjectures, where our invariants match the predicted answer. Finally, we give examples where our invariant matches the expected answer in cases where the cycle is non-reduced, non-planar, or non-primitive.Comment: 63 pages, many improvements of the exposition following referee comments, final version to appear in Inventione
    • …
    corecore