1,378 research outputs found

    Kinetic mechanism of ketoreductase activity of prostaglandin F synthase from bovine lung

    Get PDF
    AbstractThe kinetic mechanism of ketoreductase activity of bovine lung prostaglandin F synthase, expressed in E. coli, was investigated. Data on initial velocity and radioisotope exchange between [3H]prostaglandin D; and 9α, 11β-prostaglandin F2 suggest that the enzyme obeys the ping-pong mechanism. Using a fluorescence technique we obtained a binding constant of 3 μM for NADPH. This is in close correlation with the kinetically determined intrinsic Michaelis constant for NADPH. Activation energy of the redox process was determined from the temperature dependence of maximal velocities for nitrobenzaldehyde and menadione and was found to be 119 and 96 kJmol, respectively

    Spinodal nanodecomposition in magnetically doped semiconductors

    Full text link
    This review presents the recent progress in computational materials design, experimental realization, and control methods of spinodal nanodecomposition under three- and two-dimensional crystal-growth conditions in spintronic materials, such as magnetically doped semiconductors. The computational description of nanodecomposition, performed by combining first-principles calculations with kinetic Monte Carlo simulations, is discussed together with extensive electron microscopy, synchrotron radiation, scanning probe, and ion beam methods that have been employed to visualize binodal and spinodal nanodecomposition (chemical phase separation) as well as nanoprecipitation (crystallographic phase separation) in a range of semiconductor compounds with a concentration of transition metal (TM) impurities beyond the solubility limit. The role of growth conditions, co-doping by shallow impurities, kinetic barriers, and surface reactions in controlling the aggregation of magnetic cations is highlighted. According to theoretical simulations and experimental results the TM-rich regions appear either in the form of nanodots (the {\em dairiseki} phase) or nanocolumns (the {\em konbu} phase) buried in the host semiconductor. Particular attention is paid to Mn-doped group III arsenides and antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped group II chalcogenides, in which ferromagnetic features persisting up to above room temperature correlate with the presence of nanodecomposition and account for the application-relevant magneto-optical and magnetotransport properties of these compounds. Finally, it is pointed out that spinodal nanodecomposition can be viewed as a new class of bottom-up approach to nanofabrication.Comment: 72 pages, 79 figure

    Strain and correlation of self-organized Ge_(1-x)Mn_x nanocolumns embedded in Ge (001)

    Full text link
    We report on the structural properties of Ge_(1-x)Mn_x layers grown by molecular beam epitaxy. In these layers, nanocolumns with a high Mn content are embedded in an almost-pure Ge matrix. We have used grazing-incidence X-ray scattering, atomic force and transmission electron microscopy to study the structural properties of the columns. We demonstrate how the elastic deformation of the matrix (as calculated using atomistic simulations) around the columns, as well as the average inter-column distance can account for the shape of the diffusion around Bragg peaks.Comment: 9 pages, 7 figure

    Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columns

    Get PDF
    We report on the structural and magnetic properties of thin Ge(1-x)Mn(x)films grown by molecular beam epitaxy (MBE) on Ge(001) substrates at temperatures (Tg) ranging from 80deg C to 200deg C, with average Mn contents between 1 % and 11 %. Their crystalline structure, morphology and composition have been investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy and x-ray diffraction. In the whole range of growth temperatures and Mn concentrations, we observed the formation of manganese rich nanostructures embedded in a nearly pure germanium matrix. Growth temperature mostly determines the structural properties of Mn-rich nanostructures. For low growth temperatures (below 120deg C), we evidenced a two-dimensional spinodal decomposition resulting in the formation of vertical one-dimensional nanostructures (nanocolumns). Moreover we show in this paper the influence of growth parameters (Tg and Mn content) on this decomposition i.e. on nanocolumns size and density. For temperatures higher than 180deg C, we observed the formation of Ge3Mn5 clusters. For intermediate growth temperatures nanocolumns and nanoclusters coexist. Combining high resolution TEM and superconducting quantum interference device magnetometry, we could evidence at least four different magnetic phases in Ge(1-x)Mn(x) films: (i) paramagnetic diluted Mn atoms in the germanium matrix, (ii) superparamagnetic and ferromagnetic low-Tc nanocolumns (120 K 400 K) and (iv) Ge3Mn5 clusters.Comment: 10 pages 2 colonnes revTex formatte

    The role of cardiac troponin I as a prognosticator in critically ill medical patients: a prospective observational cohort study

    Get PDF
    INTRODUCTION: Myocardial injury is frequently unrecognized in intensive care unit (ICU) patients. Cardiac troponin I (cTnI), a surrogate of myocardial injury, has been shown to correlate with outcome in selected groups of patients. We wanted to determine if cTnI level measured upon admission is an independent predictor of mortality in a heterogeneous group of critically ill medical patients. METHODS: We conducted a prospective observational cohort study; 128 consecutive patients admitted to a medical ICU at a tertiary university hospital were enrolled. cTnI levels were measured within 6 h of admission and were considered positive (>0.7 ng/ml) or negative. A variety of clinical and laboratory variables were recorded. RESULTS: Both cTnI positive and negative groups were similar in terms of age, sex and pre-admission co-morbidity. In a univariate analysis, positive cTnI was associated with increased mortality (OR 7.0, 95% CI 2.44–20.5, p < 0.001), higher Acute Physiology and Chronic Health Evaluation (APACHE) II scores and a higher rate of multi-organ failure and sepsis. This association between cTnI and mortality was more pronounced among elderly patients (>65 years of age). Multivariate analysis controlling for APACHE II score revealed that elevated cTnI levels are not independently associated with 28-day mortality. CONCLUSION: In critically ill medical patients, elevated cTnI level measured upon admission is associated with increased mortality rate. cTnI does not independently contribute to the prediction of 28-day mortality beyond that provided by APACHE II

    Exchange bias in GeMn nanocolumns: the role of surface oxidation

    Full text link
    We report on the exchange biasing of self-assembled ferromagnetic GeMn nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of this surface oxide shows a multiplet fine structure that is typical of the Mn2+ valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K) in a magnetic field as low as 0.25 T. This exchange bias is attributed to the interface coupling between the ferromagnetic nanocolumns and the antiferromagnetic MnO-like caps. The effect enhancement is achieved by depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure

    Electrical spin injection and detection in Germanium using three terminal geometry

    Full text link
    In this letter, we report on successful electrical spin injection and detection in \textit{n}-type germanium-on-insulator (GOI) using a Co/Py/Al2_{2}O3_{3} spin injector and 3-terminal non-local measurements. We observe an enhanced spin accumulation signal of the order of 1 meV consistent with the sequential tunneling process via interface states in the vicinity of the Al2_{2}O3_{3}/Ge interface. This spin signal is further observable up to 220 K. Moreover, the presence of a strong \textit{inverted} Hanle effect points at the influence of random fields arising from interface roughness on the injected spins.Comment: 4 pages, 3 figure
    corecore