48 research outputs found

    Mitigation Ponds Offer Drought Resiliency for Western Spadefoot (Spea hammondii) Populations

    Get PDF
    Synergistic effects of habitat loss, drought, and climate change exacerbate amphibian declines. In southern California urbanization continues to convert natural habitat, while prolonged drought reduces surface water availability. Protection of biodiversity may be provided through mitigation; however, the long-term effectiveness of different strategies is often unreported. As a mitigation measure for building a new development within occupied Spea hammondii (western spadefoot) habitat in Orange County, California, artificial breeding pools were constructed at two off-site locations. Spea hammondii tadpoles were translocated from the pools at the development site to two off-site locations in 2005–2006. We conducted surveys a decade later (2016) to determine if S. hammondii were persisting and breeding successfully at either the original development site or the human-made pools at the two mitigation sites. We also verified hydroperiods of any existing pools at all three locations to see if any held water long enough for successful S. hammondii recruitment through metamorphosis. During our study, no pooling water was detected at two of three main sites surveyed, and no S. hammondii were observed at these locations. Twelve of the 14 pools created at only one of the two mitigation sites held water for over 30 d, and we detected successful breeding at seven of these pools. Recruitment in some mitigation ponds indicated that S. hammondii habitat can be created and maintained over 10+ yr, even during the fifth year of a catastrophic drought. Therefore, this may also serve as a conservation strategy to mitigate climate change and habitat loss. During our study, no pooling water was detected at two of three main sites surveyed, and no S. hammondii were observed at these locations. Twelve of the 14 pools created at a third site held water for over 30 days and we detected successful breeding at seven of these pools in 2016. Recruitment in some mitigation ponds indicated that S. hammondii habitat can be created and maintained over 10+ years, even during the fifth year of a catastrophic drought, therefore this may also serve as a management strategy for conservation with regard to climate change and habitat loss

    Ground-gamma band mixing and odd-even staggering in heavy deformed nuclei

    Full text link
    It is proposed that the odd-even staggering (OES) in the Îł\gamma- bands of heavy deformed nuclei can be reasonably characterized by a discrete approximation of the fourth derivative of the odd-even energy difference as a function of angular momentum LL. This quantity exhibits a well developed staggering pattern (zigzagging behavior with alternating signs) in rare earth nuclei and actinides with long Îł\gamma- bands (L≄10L\geq 10). It is shown that the OES can be interpreted reasonably as the result of the interaction of the Îł\gamma band with the ground band in the framework of a Vector Boson Model with SU(3) dynamical symmetry. The model energy expression reproduces successfully the staggering pattern in all considered nuclei up to L=12−13L=12-13. The general behavior of the OES effect in rotational regions is studied in terms of the ground--Îł\gamma band-mixing interaction, showing that strong OES effect occurs in regions with strong ground--Îł\gamma band-mixing interaction. The approach used allows a detailed comparison of the OES in Îł\gamma bands with the other kinds of staggering effects in nuclei and diatomic molecules.Comment: 25 pages, 11 postscript figure

    Determination of Carbon in Organic Compounds

    No full text

    Trace Elements in Stormflow, Ash, and Burned Soil following the 2009 Station Fire in Southern California

    No full text
    <div><p>Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life.</p></div

    Habitat preference modulates transoceanic dispersal in a terrestrial vertebrate

    No full text
    The importance of long-distance dispersal (LDD) in shaping geographical distributions has been debated since the nineteenth century. In terrestrial vertebrates, LDD events across large water bodies are considered highly improbable, but organismal traits affecting dispersal capacity are generally not taken into account. Here, we focus on a recent lizard radiation and combine a summary-coalescent species tree based on 1225 exons with a probabilistic model that links dispersal capacity to an evolving trait, to investigate whether ecological specialization has influenced the probability of trans-oceanic dispersal. Cryptoblepharus species that occur in coastal habitats have on average dispersed 13 to 14 times more frequently than non-coastal species and coastal specialization has, therefore, led to an extraordinarily widespread distribution that includes multiple continents and distant island archipelagoes. Furthermore, their presence across the Pacific substantially predates the age of human colonization and we can explicitly reject the possibility that these patterns are solely shaped by human-mediated dispersal. Overall, by combining new analytical methods with a comprehensive phylogenomic dataset, we use a quantitative framework to show how coastal specialization can influence dispersal capacity and eventually shape geographical distributions at a macroevolutionary scale
    corecore