2,209 research outputs found

    Nucleosynthesis Constraints on Scalar-Tensor Theories of Gravity

    Get PDF
    We study the cosmological evolution of massless single-field scalar-tensor theories of gravitation from the time before the onset of e+e−e^+e^- annihilation and nucleosynthesis up to the present. The cosmological evolution together with the observational bounds on the abundances of the lightest elements (those mostly produced in the early universe) place constraints on the coefficients of the Taylor series expansion of a(ϕ)a(\phi), which specifies the coupling of the scalar field to matter and is the only free function in the theory. In the case when a(ϕ)a(\phi) has a minimum (i.e., when the theory evolves towards general relativity) these constraints translate into a stronger limit on the Post-Newtonian parameters γ\gamma and β\beta than any other observational test. Moreover, our bounds imply that, even at the epoch of annihilation and nucleosynthesis, the evolution of the universe must be very close to that predicted by general relativity if we do not want to over- or underproduce 4^{4}He. Thus the amount of scalar field contribution to gravity is very small even at such an early epoch.Comment: 15 pages, 2 figures, ReVTeX 3.1, submitted to Phys. Rev. D1

    Corotation Resonance and Diskoseismology Modes of Black Hole Accretion Disks

    Full text link
    We demonstrate that the corotation resonance affects only some non-axisymmetric g-mode oscillations of thin accretion disks, since it is located within their capture zones. Using a more general (weaker radial WKB approximation) formulation of the governing equations, such g-modes, treated as perfect fluid perturbations, are shown to formally diverge at the position of the corotation resonance. A small amount of viscosity adds a small imaginary part to the eigenfrequency which has been shown to induce a secular instability (mode growth) if it acts hydrodynamically. The g-mode corotation resonance divergence disappears, but the mode magnitude can remain largest at the place of the corotation resonance. For the known g-modes with moderate values of the radial mode number and axial mode number (and any vertical mode number), the corotation resonance lies well outside their trapping region (and inside the innermost stable circular orbit), so the observationally relevant modes are unaffected by the resonance. The axisymmetric g-mode has been seen by Reynolds & Miller in a recent inviscid hydrodynamic accretion disk global numerical simulation. We also point out that the g-mode eigenfrequencies are approximately proportional to m for axial mode numbers |m|>0.Comment: 16 pages, no figures. Submitted to The Astrophysical Journa

    Trajectories of Experience Through the Pandemic: A Qualitative Longitudinal Dataset

    Get PDF
    Here, we present a dataset collected within a longitudinal interview study that has been conducted as part of a larger project (i.e., Viral Communication), exploring (changing) public attitudes and behaviours through the course of the pandemic in Germany. From a nationally representative survey, forty participants were purposively sampled on the basis of gender, age and socioeconomic status for the interviews. Each participant was interviewed three times within a 10 month time frame (between December 2020 and September 2021), with the exception of two dropouts from the study. The semi-structured interviews were developed to further elaborate on some of the responses in the survey instrument and to provide additional insights into topics and controversies surrounding the Covid-19 pandemic in Germany, such as information/misinformation, trust/distrust, compliance, vaccination, and conspiracy beliefs

    Why people attend science festivals : interests, motivations and self-reported benefits of public engagement with research

    Get PDF
    As a form of public engagement, science festivals have rapidly expanded in size and number over recent years. However, as with other domains of informal public engagement that are not linked to policy outcomes, existing research does not fully address science festivals’ impacts and popularity.This study adduces evidence from surveys and focus groups to elucidate the perspectives of visitors at a large UK science festival. Results show that visitors value the opportunities science festivals afford to interact with scientific researchers and to encounter different types of science engagement aimed at adults, children and families. The most significant self-reported impact of attending a science festival was the development of increased interest and curiosity about new areas of scientific knowledge within a socially stimulating and enjoyable setting

    QPOs: Einstein's gravity non-linear resonances

    Full text link
    There is strong evidence that the observed kHz Quasi Periodic Oscillations (QPOs) in the X-ray flux of neutron star and black hole sources in LMXRBs are linked to Einstein's General Relativity. Abramowicz&Klu\'zniak (2001) suggested a non-linear resonance model to explain the QPOs origin: here we summarize their idea and the development of a mathematical toy-model which begins to throw light on the nature of Einstein's gravity non-linear oscillations.Comment: Proceeding of the Einstein's Legacy, Munich 200

    Gravitational Waves from Mergin Compact Binaries: How Accurately Can One Extract the Binary's Parameters from the Inspiral Waveform?

    Full text link
    The most promising source of gravitational waves for the planned detectors LIGO and VIRGO are merging compact binaries, i.e., neutron star/neutron star (NS/NS), neutron star/black hole (NS/BH), and black hole/black-hole (BH/BH) binaries. We investigate how accurately the distance to the source and the masses and spins of the two bodies will be measured from the gravitational wave signals by the three detector LIGO/VIRGO network using ``advanced detectors'' (those present a few years after initial operation). The combination M≡(M1M2)3/5(M1+M2)−1/5{\cal M} \equiv (M_1 M_2)^{3/5}(M_1 +M_2)^{-1/5} of the masses of the two bodies is measurable with an accuracy ≈0.1%−1%\approx 0.1\%-1\%. The reduced mass is measurable to ∼10%−15%\sim 10\%-15\% for NS/NS and NS/BH binaries, and ∼50%\sim 50\% for BH/BH binaries (assuming 10M⊙10M_\odot BH's). Measurements of the masses and spins are strongly correlated; there is a combination of μ\mu and the spin angular momenta that is measured to within ∼1%\sim 1\%. We also estimate that distance measurement accuracies will be ≤15%\le 15\% for ∼8%\sim 8\% of the detected signals, and ≤30%\le 30\% for ∼60%\sim 60\% of the signals, for the LIGO/VIRGO 3-detector network.Comment: 103 pages, 20 figures, submitted to Phys Rev D, uses revtex macros, Caltech preprint GRP-36

    Epicyclic oscillations of non-slender fluid tori around Kerr black holes

    Full text link
    Considering epicyclic oscillations of pressure-supported perfect fluid tori orbiting Kerr black holes we examine non-geodesic (pressure) effects on the epicyclic modes properties. Using a perturbation method we derive fully general relativistic formulas for eigenfunctions and eigenfrequencies of the radial and vertical epicyclic modes of a slightly non-slender, constant specific angular momentum torus up to second-order accuracy with respect to the torus thickness. The behaviour of the axisymmetric and lowest-order (m=±1m=\pm 1) non-axisymmetric epicyclic modes is investigated. For an arbitrary black hole spin we find that, in comparison with the (axisymmetric) epicyclic frequencies of free test particles, non-slender tori receive negative pressure corrections and exhibit thus lower frequencies. Our findings are in qualitative agreement with the results of a recent pseudo-Newtonian study of analogous problem defined within the Paczy{\'n}ski-Wiita potential. Implications of our results on the high-frequency QPO models dealing with epicyclic oscillations are addressed.Comment: 24 pages, 8 figure
    • …
    corecore