24 research outputs found

    Inhibition of murine IgE and immediate cutaneous hypersensitivity responses to ovalbumin by the immunomodulatory agent leflunomide

    No full text
    Leflunomide has been identified as an immunoregulatory and anti-inflammatory compound. Allergic disease is characterized by elevated serum IgE levels, production of allergen-specific IgE and the release of inflammatory mediators from mast cells and granulocytes. Here we demonstrate, using an in vivo murine model, the ability of leflunomide to down-regulate levels of total and allergen-specific serum IgE production. Mice receiving leflunomide (45 mg/kg) orally at the time of primary immunization with ovalbumin adsorbed to aluminium hydroxide adjuvant, showed a reduction in total serum IgE levels of 95%, 41% and 32% following primary, secondary and tertiary immunizations, respectively (P < 0.05). When leflunomide was administered both at the time of primary and subsequent immunizations, reductions in total and specific serum IgE levels of > 80% and > 38%, respectively, were observed (P < 0.05). Administration of leflunomide to mice which had already developed an IgE response resulted in reductions in total and specific serum IgE levels of > 80% and > 45%, respectively (P < 0.05). Following leflunomide treatment, animals failed to develop immediate cutaneous hypersensitivity responses when challenged intradermally with allergen. Down-regulation of immunoglobulin production was not restricted to IgE, since levels of allergen-specific IgG1 and IgG2a in serum were also reduced. The finding of significant reductions in total and allergen-specific IgM suggests that the mechanism of action does not involve selective inhibition of immunoglobulin class switching. A loss in production of the T helper cell-derived B cell differentiation factor IL-5 may account for the reduction in immunoglobulin levels. In adoptive transfer experiments leflunomide did not induce tolerance in allergen-reactive Th2 populations, contrary to animal disease models of transplantation and autoimmunity, where leflunomide was shown to induce tolerance in the effector T cell population
    corecore