21,736 research outputs found
The Optimal Rate of Decline of an Inefficient Industry
This paper considers the problem of the optimal time path of contraction of an industry which has been hit by foreign competition, and shows that in general, along the optimal path, a production subsidy is warranted. The optimal subsidy trades off the benefit of unemployment in speeding up the approach to the new long-run equilibrium against the cost of lost output in the ‘inefficient’ industry. The dynamic shadow price of labour in this industry is also derived and shown to be always positive, though below the industry wage rat
The Optimal Rate of Decline of an Inefficient Industry
This paper considers the problem of the optimal time path of contraction of an industry which has been hit by foreign competition, and shows that in general, along the optimal path, a production subsidy is warranted. The optimal subsidy trades off the benefit of unemployment in speeding up the approach to the new long-run equilibrium against the cost of lost output in the ‘inefficient’ industry. The dynamic shadow price of labour in this industry is also derived and shown to be always positive, though below the industry wage rate
Growth of solid hcp \^4He off the melting curve
We report studies of the growth of solid hcp \4he at pressures higher than
the bulk freezing pressure using a cell design that allows us to inject atoms
into the solid. Near the melting curve during injection we observe random
events during which the pressure recorded in the cell drops abruptly. These
events are accompanied by transient increases in the temperature of the cell.
We discuss these transients and conclude that they represent the solidification
of meta-stable liquid regions and the associated relief of strain in the local
solid. We also observe that further from the melting curve the transients are
no longer recorded, but that we can continue to add atoms to the solid,
increasing its density at fixed volume. We document these changes in density
with respect to changes in the chemical potential as a function of temperature
and discuss these in the context of recent theoretical work.Comment: 7 pages, 8 figure
Ultracold bosons in a synthetic periodic magnetic field: Mott phases and re-entrant superfluid-insulator transitions
We study Mott phases and superfluid-insulator (SI) transitions of ultracold
bosonic atoms in a two-dimensional square optical lattice at commensurate
filling and in the presence of a synthetic periodic vector potential
characterized by a strength and a period , where is an integer
and is the lattice spacing. We show that the Schr\"odinger equation for the
non-interacting bosons in the presence of such a periodic vector potential can
be reduced to an one-dimensional Harper-like equation which yields energy
bands. The lowest of these bands have either single or double minima whose
position within the magnetic Brillouin zone can be tuned by varying for a
given . Using these energies and a strong-coupling expansion technique, we
compute the phase diagram of these bosons in the presence of a deep optical
lattice. We chart out the and dependence of the momentum distribution
of the bosons in the Mott phases near the SI transitions and demonstrate that
the bosons exhibit several re-entrant field-induced SI transitions for any
fixed period . We also predict that the superfluid density of the resultant
superfluid state near such a SI transition has a periodicity () in
real space for odd (even) and suggest experiments to test our theory.Comment: 8 pages, 11 figures, v
Trends in social capital: Membership of associations in Great Britain, 1991–98
This Note uses the British Household Panel Study (BHPS) to consider the changing volume and distribution of voluntary association membership (and hence social capital) in Great Britain. We aim to supplement Hall's study of trends in social capital published in this Journal with more recent and longitudinal data. This allows us to show that whilst the volume of social capital is not declining, it is becoming increasingly class specific, and that its relative aggregate stability masks considerable turnover at the individual level. These findings are significant for current debates on social capital
Fast Fourier Transform algorithm design and tradeoffs
The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program
Simulation of flight test conditions in the Langley pilot transonic cryogenic tunnel
The theory and advantages of the cryogenic tunnel concept are briefly reviewed. The unique ability to vary temperature independently of pressure and Mach number allows, in addition to large reductions in model loads and tunnel power, the independent determination of Reynolds number, Mach number, and aeroelastic effects on the aerodynamic characteristics of the model. Various combinations of Reynolds number and dynamic pressure are established to represent accurately flight variations of aeroelastic deformation with altitude changes. The consequences of the thermal and caloric imperfections of the test gas under cryogenic conditions were examined and found to be insignificant for operating pressures up to 5 atm. The characteristics of the Langley pilot transonic cryogenic tunnel are described and the results of initial tunnel operation are presented. Tests of a two-dimensional airfoil at a Mach number of 0.85 show identical pressure distributions for a chord Reynolds number of 8,600,000 obtained first at a stagnation pressure of 4.91 atm at a stagnation temperature of 322.0 K and then at a stagnation pressure of 1.19 atm at a stagnation temperature of 116.5 K
Mass flow through solid 4He induced by the fountain effect
Using an apparatus that allows superfluid liquid 4He to be in contact with
hcp solid \4he at pressures greater than the bulk melting pressure of the
solid, we have performed experiments that show evidence for 4He mass flux
through the solid and the likely presence of superfluid inside the solid. We
present results that show that a thermomechanical equilibrium in quantitative
agreement with the fountain effect exists between two liquid reservoirs
connected to each other through two superfluid-filled Vycor rods in series with
a chamber filled with solid 4He. We use the thermomechanical effect to induce
flow through the solid and measure the flow rate. On cooling, mass flux appears
near T = 600 mK and rises smoothly as the temperature is lowered. Near T = 75
mK a sharp drop in the flux is present. The flux increases as the temperature
is reduced below 75 mK. We comment on possible causes of this flux minimum.Comment: 20 pages, 22 figures, 7 table
Classification of interstitial lung disease patterns with topological texture features
Topological texture features were compared in their ability to classify
morphological patterns known as 'honeycombing' that are considered indicative
for the presence of fibrotic interstitial lung diseases in high-resolution
computed tomography (HRCT) images. For 14 patients with known occurrence of
honey-combing, a stack of 70 axial, lung kernel reconstructed images were
acquired from HRCT chest exams. A set of 241 regions of interest of both
healthy and pathological (89) lung tissue were identified by an experienced
radiologist. Texture features were extracted using six properties calculated
from gray-level co-occurrence matrices (GLCM), Minkowski Dimensions (MDs), and
three Minkowski Functionals (MFs, e.g. MF.euler). A k-nearest-neighbor (k-NN)
classifier and a Multilayer Radial Basis Functions Network (RBFN) were
optimized in a 10-fold cross-validation for each texture vector, and the
classification accuracy was calculated on independent test sets as a
quantitative measure of automated tissue characterization. A Wilcoxon
signed-rank test was used to compare two accuracy distributions and the
significance thresholds were adjusted for multiple comparisons by the
Bonferroni correction. The best classification results were obtained by the MF
features, which performed significantly better than all the standard GLCM and
MD features (p < 0.005) for both classifiers. The highest accuracy was found
for MF.euler (97.5%, 96.6%; for the k-NN and RBFN classifier, respectively).
The best standard texture features were the GLCM features 'homogeneity' (91.8%,
87.2%) and 'absolute value' (90.2%, 88.5%). The results indicate that advanced
topological texture features can provide superior classification performance in
computer-assisted diagnosis of interstitial lung diseases when compared to
standard texture analysis methods.Comment: 8 pages, 5 figures, Proceedings SPIE Medical Imaging 201
- …