288 research outputs found

    Negative Refraction in Ferromagnet/Superconductor Superlattices

    Full text link
    Negative refraction, which reverses many fundamental aspects of classical optics, can be obtained in systems with negative magnetic permeability and negative dielectric permittivity. This Letter documents an experimental realization of negative refraction at millimeter waves, finite magnetic fields and cryogenic temperatures utilizing a multilayer stack of ferromagnetic and superconducting thin films. In the present case the superconducting YBa_2Cu_3O_7 layers provide negative permittivity while negative permeability is achieved via ferromagnetic (La:Sr)MnO_3 layers for frequencies and magnetic fields close to the ferromagnetic resonance. In these superlattices the refractive index can be switched between positive and negative regions using external magnetic field as tuning parameter.Comment: 4 Pages, 3 Figures, Phys. Rev. Lett., accepte

    The R.I. Pimenov unified gravitation and electromagnetism field theory as semi-Riemannian geometry

    Full text link
    More then forty years ago R.I. Pimenov introduced a new geometry -- semi-Riemannian one -- as a set of geometrical objects consistent with a fibering pr:Mn→Mm. pr: M_n \to M_m. He suggested the heuristic principle according to which the physically different quantities (meter, second, coulomb etc.) are geometrically modelled as space coordinates that are not superposed by automorphisms. As there is only one type of coordinates in Riemannian geometry and only three types of coordinates in pseudo-Riemannian one, a multiple fibered semi-Riemannian geometry is the most appropriate one for the treatment of more then three different physical quantities as unified geometrical field theory. Semi-Euclidean geometry 3R54^{3}R_5^4 with 1-dimensional fiber x5x^5 and 4-dimensional Minkowski space-time as a base is naturally interpreted as classical electrodynamics. Semi-Riemannian geometry 3V54^{3}V_5^4 with the general relativity pseudo-Riemannian space-time 3V4,^{3}V^4, and 1-dimensional fiber x5,x^5, responsible for the electromagnetism, provides the unified field theory of gravitation and electromagnetism. Unlike Kaluza-Klein theories, where the 5-th coordinate appears in nondegenerate Riemannian or pseudo-Riemannian geometry, the theory based on semi-Riemannian geometry is free from defects of the former. In particular, scalar field does not arise. PACS: 04.50.Cd, 02.40.-k, 11.10.KkComment: 16 pages, 2 figures. Submited to Physics of Atomic Nucle

    Spectral origin of the colossal magnetodielectric effect in multiferroic DyMn2O5

    Full text link
    The origin of the colossal magnetodielectric effect in DyMn2O5 [1] has been an outstanding question in multiferroics. Here, we report the activation of the electric dipole mode at 4-5 cm-1 in an applied magnetic field which fully accounts for the CMD effect. We examine two alternative explanations of this mode: an electromagnon and transitions between f-electron levels of Dy3+ ions. The experimental and theoretical evidence supports the electromagnon origin of the CMD effect.Comment: 5 pages, 4 figures, submitted to PR

    Universal relationship between the penetration depth and the normal-state conductivity in YBaCuO

    Full text link
    The absolute values of the conductivity in the normal state sigma_n and of the low temperature penetration depths lambda(0) were measured for a number of different samples of the YBaCuO family. We found a striking correlation between sigma_n and 1/lambda^2, regardless of doping, oxygen reduction or defects, thus providing a simple method to predict the superconducting penetration depth and to have an estimate of the sample quality by measuring the normal-state conductivity.Comment: 7 pages, 1 figure, Europhys. Lett., accepte

    Optical conductivity and penetration depth in MgB2

    Full text link
    The complex conductivity of a MgB2 film has been investigated in the frequency range 4 cm^{-1}< nu < 30 cm^{-1} and for temperatures 2.7 K < T <300 K. The overall temperature dependence of both components of the complex conductivity is reminiscent of BCS-type behavior, although a detailed analysis reveals a number of discrepancies. No characteristic feature of the isotropic BCS gap temperature evolution is observed in the conductivity spectra in the superconducting state. A peak in the temperature dependence of the real part of the conductivity is detected for frequencies below 9 cm^{-1}. The superconducting penetration depth follows a T^2 behavior at low temperatures.Comment: 4 pages, 4 figure

    Electromagnons in multiferroic YMn2O5 and TbMn2O5

    Full text link
    Based on temperature dependent far infrared transmission spectra of YMn2O5 and TbMn2O5 single crystals, we report the observation of electric dipole-active magnetic excitations, or electromagnons, in these multiferroics. Electromagnons are found to be directly responsible for the step-like anomaly of the static dielectric constant at the commensurate--incommensurate magnetic transition and are the origin of the colossal magneto-dielectric effect reported in these multiferroics.Comment: 4 pages, 4 figures, submitte

    Towards proof of new identity for Green functions in N=1 supersymmetric electrodynamics

    Full text link
    For the N=1 supersymmetric massless electrodynamics, regularized by higher derivatives, we describe a method, by which one can try to prove the new identity for the Green functions, which was proposed earlier. Using this method we show that some contribution to the new identity are really 0.Comment: 16 pages, 1 figure, an error corrected, significant change

    Charge ordering and magneto-polarons in Na0.82_{0.82}CoO2_2

    Full text link
    Using spectral ellipsometry, we have measured the dielectric function of a Na0.82(2)_{0.82(2)}CoO2_2 crystal that exhibits bulk antiferromagnetism with TN_{N}=19.8 K. We identify two prominent transitions as a function of temperature. The first one at 280 K involves marked changes of the electronic and the lattice response that are indicative of charge ordering in the CoO2_{2} layers. The second transition coincides with TN_{N}=19.8 K and reveals a sizeable spin-charge coupling. The data are discussed in terms of charge ordering and formation of magneto-polarons due to a charge-induced spin-state transition of adjacent Co3+^{3+} ions
    • …
    corecore