72 research outputs found
Huge Transverse Magnetization in the Field-Induced Phase of the Antiferromagnetic Molecular Wheel CsFe8
The 1H-NMR spectrum and nuclear relaxation rate 1/T_1 in the
antiferromagnetic wheel CsFe8 were measured to characterize the previously
observed magnetic field-induced low-temperature phase around the level crossing
at 8 T. The data show that the phase is characterized by a huge staggered
transverse polarization of the electronic Fe spins, and the opening of a gap,
providing microscopic evidence for the interpretation of the phase as a
field-induced magneto-elastic instability.Comment: 5 pages, 4 figures, REVTEX4, to appear in PR
Heisenberg exchange parameters of molecular magnets from the high-temperature susceptibility expansion
We provide exact analytical expressions for the magnetic susceptibility
function in the high temperature expansion for finite Heisenberg spin systems
with an arbitrary coupling matrix, arbitrary single-spin quantum number, and
arbitrary number of spins. The results can be used to determine unknown
exchange parameters from zero-field magnetic susceptibility measurements
without diagonalizing the system Hamiltonian. We demonstrate the possibility of
reconstructing the exchange parameters from simulated data for two specific
model systems. We examine the accuracy and stability of the proposed method.Comment: 13 pages, 7 figures, submitted to Phys. Rev.
Triplet Dispersion in CuGeO_3: Perturbative Analysis
We reconsider the 2d model for CuGeO_3 introduced previously (Phys. Rev.
Lett. 79, 163 (1997)). Using a computer aided perturbation method based on flow
equations we expand the 1-triplet dispersion up to 10th order. The expansion is
provided as a polynom in the model parameters. The latter are fixed by fitting
the theoretical result to experimental data obtained by INS. For a dimerization
delta = 0.08(1) we find an excellent agreement with experiment. This value is
at least 2 to 3 times higher than values deduced previously from 1d chain
approaches. For the intrachain frustration alpha_0 we find a smaller value of
0.25(3). The existence of interchain frustration conjectured previously is
confirmed by the analysis of temperature dependent susceptibility.Comment: 8 pages, 10 figures, submitted to Phys. Rev.
Spin dynamics in molecular ring nanomagnets: Significant effect of acoustic phonons and magnetic anisotropies
The nuclear spin-lattice relaxation rate 1/T_1_ is calculated for magnetic
ring clusters by fully diagonalizing their microscopic spin Hamiltonians.
Whether the nearest-neighbor exchange interaction J is ferromagnetic or
antiferromagnetic, 1/T_1_ versus temperature T in ring nanomagnets may be
peaked at around k_B_T=|J| provided the lifetime broadening of discrete energy
levels is in proportion to T^3^. Experimental findings for ferromagnetic and
antiferromagnetic Cu^II^ rings are reproduced with crucial contributions of
magnetic anisotropies as well as acoustic phonons.Comment: 5 pages with 5 figures embedded, to be published in J. Phys. Soc.
Jpn. 75, No. 10 (2006
Neutron scattering study of the field-induced soliton lattice in CuGeO
CuGeO undergoes a transition from a spin-Peierls phase to an
incommensurate phase at a critical field of T. In the
high-field phase a lattice of solitons forms, with both structural and magnetic
components, and these have been studied using neutron scattering techniques.
Our results provide direct evidence for a long-ranged magnetic soliton
structure which has both staggered and uniform magnetizations, and with
amplitudes that are broadly in accord with theoretical estimates. The magnetic
soliton width, , and the field dependence of the incommensurability,
, are found to agree well with theoretical predictions.Comment: 5 pages, 3 figure
Q-dependence of the inelastic neutron scattering cross section for molecular spin clusters with high molecular symmetry
For powder samples of polynuclear metal complexes the dependence of the
inelastic neutron scattering intensity on the momentum transfer Q is known to
be described by a combination of so called interference terms. They reflect the
interplay between the geometrical structure of the compound and the spatial
properties of the wave functions involved in the transition. In this work, it
is shown that the Q-dependence is strongly interrelated with the molecular
symmetry of molecular nanomagnets, and, if the molecular symmetry is high
enough, is actually completely determined by it. A general formalism connecting
spatial symmetry and interference terms is developed. The arguments are
detailed for cyclic spin clusters, as experimentally realized by e.g. the
octanuclear molecular wheel Cr8, and the star like tetranuclear cluster Fe4.Comment: 8 pages, 1 figures, REVTEX
- …