214 research outputs found

    Solar wind modeling with the Alfven Wave Solar atmosphere Model driven by HMI-based Near-Real-Time maps by the National Solar Observatory

    Full text link
    We explore model performance for the Alfven Wave Solar atmosphere Model (AWSoM) with near-real-time (NRT) synoptic maps of the photospheric vector magnetic field. These maps, produced by assimilating data from the Helioseismic Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO), use a different method developed at the National Solar Observatory (NSO) to provide a near contemporaneous source of data to drive numerical models. Here, we apply these NSO-HMI-NRT maps to simulate three Carrington rotations (CRs): 2107-2108 (centered on 2011/03/07 20:12 CME event), 2123 (integer CR) and 2218--2219 (centered on 2019/07/2 solar eclipse), which together cover a wide range of activity level for solar cycle 24. We show simulation results, which reproduce both extreme ultraviolet emission (EUV) from the low corona while simultaneously matching in situ observations at 1 au as well as quantify the total unsigned open magnetic flux from these maps

    Nonlinear force-free and potential field models of active-region and global coronal fields during the Whole Heliospheric Interval

    Full text link
    Between 2008/3/24 and 2008/4/2, the three active regions NOAA active regions 10987, 10988 and 10989 were observed daily by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM) while they traversed the solar disk. We use these measurements and the nonlinear force-free magnetic field code XTRAPOL to reconstruct the coronal magnetic field for each active region and compare model field lines with images from the Solar Terrestrial RElations Observatory (STEREO) and Hinode X-ray Telescope (XRT) telescopes. Synoptic maps made from continuous, round-the-clock Global Oscillations Network Group (GONG) magnetograms provide information on the global photospheric field and potential-field source-surface models based on these maps describe the global coronal field during the Whole Heliospheric Interval (WHI) and its neighboring rotations. Features of the modeled global field, such as the coronal holes and streamer belt locations, are discussed in comparison with extreme ultra-violet and coronagraph observations from STEREO. The global field is found to be far from a minimum, dipolar state. From the nonlinear models we compute physical quantities for the active regions such as the photospheric magnetic and electric current fluxes, the free magnetic energy and the relative helicity for each region each day where observations permit. The interconnectivity of the three regions is addressed in the context of the potential-field source-surface model. Using local and global quantities derived from the models, we briefly discuss the different observed activity levels of the regions.Comment: Accepted for publication in the Solar Physics Whole Heliospheric Interval (WHI) topical issue. We had difficulty squeezing this paper into arXiv's 15 Mb limit. The full paper is available here ftp://gong2.nso.edu/dsds_user/petrie/PetrieCanouAmari.pd

    Modeling FETCH Observations of 2005 May 13 CME

    Full text link
    This paper evaluates the quality of CME analysis that has been undertaken with the rare Faraday rotation observation of an eruption. Exploring the capability of the FETCH instrument hosted on the MOST mission, a four-satellite Faraday rotation radio sounding instrument deployed between the Earth and the Sun, we discuss the opportunities and challenges to improving the current analysis approaches.Comment: 33 pages, 24 figure

    NON-STATIONARY PHOTOCONDUCTIVITY OF GaN NANOCOMPOSITES IN ARTIFICIAL OPAL MATRIX

    Get PDF
    Abstract It was recently proposed to use synthetic opals as a host matrix for obtaining 3D arrays of electronic nanodevice

    3D evolution of a filament disappearance event observed by STEREO

    Full text link
    A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the southern hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories in particular by THEMIS. One day before the disappearance, Hα\alpha observations showed up and down flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4 degrees, showed quite different views of this untwisting flux rope in He II 304 \AA\ images. Here, we reconstruct the 3D geometry of the filament during its eruption phase using STEREO EUV He II 304 \AA\ images and find that the filament was highly inclined to the solar normal. The He II 304 \AA\ movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with apparent velocities of about 100 km s−1^{-1}, during the rapid evolution phase. Finally, as the flux rope expands into the corona, the filament disappears by becoming optically thin to undetectable levels. No CME was detected by STEREO, only a faint CME was recorded by LASCO at the beginning of the disappearance phase at 02:00 UT, which could be due to partial filament eruption. Further, STEREO Fe XII 195 \AA\ images showed bright loops beneath the filament prior to the disappearance phase, suggesting magnetic reconnection below the flux rope
    • …
    corecore