116,666 research outputs found

    Using the INSPIRAL program to search for gravitational waves from low-mass binary inspiral

    Get PDF
    The INSPIRAL program is the LIGO Scientific Collaboration's computational engine for the search for gravitational waves from binary neutron stars and sub-solar mass black holes. We describe how this program, which makes use of the FINDCHIRP algorithm (discussed in a companion paper), is integrated into a sophisticated data analysis pipeline that was used in the search for low-mass binary inspirals in data taken during the second LIGO science run.Comment: 11 pages, 3 figures, submitted to Classical and Quantum Gravity for the special issue of the GWDAW9 Proceeding

    Possible Signatures Of Dissipation From Time-Series Analysis Techniques Using A Turbulent Laboratory Magnetohydrodynamic Plasma

    Get PDF
    The frequency spectrum of magnetic fluctuations as measured on the Swarthmore Spheromak Experiment is broadband and exhibits a nearly Kolmogorov 5/3 scaling. It features a steepening region which is indicative of dissipation of magnetic fluctuation energy similar to that observed in fluid and magnetohydrodynamic turbulence systems. Two non-spectrum based time-series analysis techniques are implemented on this data set in order to seek other possible signatures of turbulent dissipation beyond just the steepening of fluctuation spectra. Presented here are results for the flatness, permutation entropy, and statistical complexity, each of which exhibits a particular character at spectral steepening scales which can then be compared to the behavior of the frequency spectrum

    Penrose Diagram for a Transient Black Hole

    Full text link
    A Penrose diagram is constructed for a spatially coherent black hole that smoothly begins an accretion, then excretes symmetrically as measured by a distant observer, with the initial and final states described by a metric of Minkowski form. Coordinate curves on the diagram are computationally derived. Causal relationships between space-time regions are briefly discussed. The life cycle of the black hole demonstrably leaves asymptotic observers in an unaltered Minkowski space-time of uniform conformal scale.Comment: 14 pages, 9 figures, spelling correction

    Tensor interaction contributions to single-particle energies

    Get PDF
    We calculate the contribution of the nucleon-nucleon tensor interaction to single-particle energies with finite-range G G matrix potentials and with zero-range Skyrme potentials. The Skx Skyrme parameters including the zero-range tensor terms with strengths calibrated to the finite-range results are refitted to nuclear properties. The fit allows the zero-range proton-neutron tensor interaction as calibrated to the finite-range potential results and that gives the observed change in the single-particle gap ϵ\epsilon(h11/2_{11/2})-ϵ\epsilon(g7/2_{7/2}) going from 114^{114}Sn to 132^{132}Sn. However, the experimental ℓ\ell dependence of the spin-orbit splittings in 132^{132}Sn and 208^{208}Pb is not well described when the tensor is added, due to a change in the radial dependence of the total spin-orbit potential. The gap shift and a good fit to the ℓ\ell-dependence can be recovered when the like-particle tensor interaction is opposite in sign to that required for the G G matrix.Comment: 5 pages, 4 figures, accepted for publication as Rapid Communication in Physical Review

    Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration

    Full text link
    Saturable absorbers are a key component for mode-locking femtosecond lasers. Polymer films containing graphene flakes have recently been used in transmission as laser mode-lockers, but suffer from high nonsaturable loss, limiting their application in low-gain lasers. Here we present a saturable absorber mirror based on a film of pure graphene flakes. The device is used to mode lock an erbium-doped fiber laser, generating pulses with state-of-the-art, sub-200-fs duration. The laser characteristic indicate that the film exhibits low nonsaturable loss (13% per pass) and large absorption modulation depth (45% of low-power absorption)

    Black Hole Entropy from Conformal Field Theory in Any Dimension

    Get PDF
    Restricted to a black hole horizon, the ``gauge'' algebra of surface deformations in general relativity contains a Virasoro subalgebra with a calculable central charge. The fields in any quantum theory of gravity must transform accordingly, i.e., they must admit a conformal field theory description. Applying Cardy's formula for the asymptotic density of states, I use this result to derive the Bekenstein-Hawking entropy. This method is universal---it holds for any black hole, and requires no details of quantum gravity---but it is also explicitly statistical mechanical, based on counting microscopic states.Comment: 9 pages, LaTeX, no figures. Slightly shortened and polished for journal; no significant changes in substanc

    Spatio-Temporal Low Count Processes with Application to Violent Crime Events

    Full text link
    There is significant interest in being able to predict where crimes will happen, for example to aid in the efficient tasking of police and other protective measures. We aim to model both the temporal and spatial dependencies often exhibited by violent crimes in order to make such predictions. The temporal variation of crimes typically follows patterns familiar in time series analysis, but the spatial patterns are irregular and do not vary smoothly across the area. Instead we find that spatially disjoint regions exhibit correlated crime patterns. It is this indeterminate inter-region correlation structure along with the low-count, discrete nature of counts of serious crimes that motivates our proposed forecasting tool. In particular, we propose to model the crime counts in each region using an integer-valued first order autoregressive process. We take a Bayesian nonparametric approach to flexibly discover a clustering of these region-specific time series. We then describe how to account for covariates within this framework. Both approaches adjust for seasonality. We demonstrate our approach through an analysis of weekly reported violent crimes in Washington, D.C. between 2001-2008. Our forecasts outperform standard methods while additionally providing useful tools such as prediction intervals
    • …
    corecore