7,987 research outputs found

    A new method for the separation of androgens from estrogens and for the partition of estriol from the estrone-estradiol fraction: with special reference to the identification and quantitative microdetermination of estrogens by ultraviolet absorption spectrophotometry

    Get PDF
    It is recognized generally that a qualitative and quantitative knowledge of the excretion pattern of the urinary estrogens is one index to an understanding of the functional activity of the ovary and adrenal cortex. Obviously, such determinations may be useful also in evaluating the normal and abnormal functions of other physiologically related endocrine glands as well as of organs like the liver and kidneys. The clinical applications of these data are self-evident. Various attempts have been made to circumvent the notoriously inaccurate values which have been obtained for the urinary estrogens by a variety of bioassay methods and calorimetric techniques (1, 2). The acknowledged shortcomings of these methods have led us to investigate the application of ultraviolet absorption spectrophotometry to the quantitative determination of the urinary estrogens in an attempt to develop an objective physical method for their accurate determination. It is known that the infra-red portion of the spectrum yields more differentially characteristic curves, but those of the ultraviolet range are more readily obtainable, and consequently better adapted to clinical use. This communication is concerned with studies of the following aspects of the problem: (1) spectrophotometric identification and quantitative micro determination of crystalline estrogens; (2) detection by spectrophotometric assay of gross errors in current methods for extraction and partition of estrogens; (3) studies on the ultraviolet absorption of substances comprising the background material; (4) separation of the phenolic estrogens from the so called neutral steroid fraction; (5) separation of urinary estrogens from other urinary phenolic substances by steam distillation; (6) micro-Girard separation of estrone from estradiol; (7) an essentially new method for the extraction and partition of crystalline estrone, estradiol, and estriol, and their quantitative assay by ultraviolet spectrophotometry

    Self-referential Monte Carlo method for calculating the free energy of crystalline solids

    Get PDF
    A self-referential Monte Carlo method is described for calculating the free energy of crystalline solids. All Monte Carlo methods for the free energy of classical crystalline solids calculate the free-energy difference between a state whose free energy can be calculated relatively easily and the state of interest. Previously published methods employ either a simple model crystal, such as the Einstein crystal, or a fluid as the reference state. The self-referential method employs a radically different reference state; it is the crystalline solid of interest but with a different number of unit cells. So it calculates the free-energy difference between two crystals, differing only in their size. The aim of this work is to demonstrate this approach by application to some simple systems, namely, the face centered cubic hard sphere and Lennard-Jones crystals. However, it can potentially be applied to arbitrary crystals in both bulk and confined environments, and ultimately it could also be very efficient

    Simulations of Cold Electroweak Baryogenesis: Finite time quenches

    Get PDF
    The electroweak symmetry breaking transition may supply the appropriate out-of-equilibrium conditions for baryogenesis if it is triggered sufficiently fast. This can happen at the end of low-scale inflation, prompting baryogenesis to occur during tachyonic preheating of the Universe, when the potential energy of the inflaton is transfered into Standard Model particles. With the proper amount of CP-violation present, the observed baryon number asymmetry can be reproduced. Within this framework of Cold Electroweak Baryogenesis, we study the dependence of the generated baryon asymmetry on the speed of the quenching transition. We find that there is a separation between ``fast'' and ``slow'' quenches, which can be used to put bounds on the allowed Higgs-inflaton coupling. We also clarify the strong Higgs mass dependence of the asymmetry reported in a companion paper (hep-ph/0604263).Comment: 18 pages, 20 figure

    The influence of anaerobic muscle activity, maturation and season on the flesh quality of farmed turbot

    Get PDF
    In order to test seasonal, rearing, maturing and anaerobic muscle activity effect on the flesh quality of turbot (Scophthalmus maximus) a total of 80 farmed turbot from three different strains from reared under natural or continuous light were killed by a percussive blow to the head in November (winter, Icelandic strain), March (spring, Portuguese strain) and June (summer, domesticated strain (France turbot)). To test the effect of anaerobic muscle activity, 10 fish were on each occasion pre rigor filleted, where one fillet was used as a control, while the other fillet was electrically stimulated using a squared 5 Hz, 10 V pulsed DC for 3 min. All pre rigor fillets were measured for pH, weighed, wrapped in aluminum foil and stored in polystyrene boxes with ice. After 7 days of storage the fillets were measured instrumentally for pH, drip loss, colour (CIE L* a* b*) and texture properties such as hardness and shear force, while fillet shrinkage and colour (RBG) were evaluated with computer imaging on photographs from a standard lightbox. Results showed that softness of the flesh was mainly influenced by factors associated with growth, such as season, photoperiod and maturation. Anaerobic muscle activity simulated with electrical stimulation caused an increase in drip loss (<1%) and loss of shear force (<4%), but had no effect on hardness or fillet shrinkage. Computer imaging revealed that muscle contractions related to the electrical stimulus forced out blood from the fillet causing less reddishness for the entire storage period. We conclude that a pH drop upon slaughter associated with anaerobic muscle activity has a minor effect on the flesh quality in the short run, while seasonal/alternatively genetic effects are predominant

    Anomalous Hall Effect in Ferromagnetic Semiconductors in the Hopping Transport Regime

    Full text link
    We present a theory of the Anomalous Hall Effect (AHE) in ferromagnetic (Ga,Mn)As in the regime when conduction is due to phonon-assisted hopping of holes between localized states in the impurity band. We show that the microscopic origin of the anomalous Hall conductivity in this system can be attributed to a phase that a hole gains when hopping around closed-loop paths in the presence of spin-orbit interactions and background magnetization of the localized Mn moments. Mapping the problem to a random resistor network, we derive an analytic expression for the macroscopic anomalous Hall conductivity σxyAH\sigma_{xy}^{AH}. We show that σxyAH\sigma_{xy}^{AH} is proportional to the first derivative of the density of states ϱ(ϵ)\varrho(\epsilon) and thus can be expected to change sign as a function of impurity band filling. We also show that σxyAH\sigma_{xy}^{AH} depends on temperature as the longitudinal conductivity σxx\sigma_{xx} within logarithmic accuracy.Comment: 4 pages, 1 eps figure, final versio

    Investigation of the Domain Wall Fermion Approach to Chiral Gauge Theories on the Lattice

    Full text link
    We investigate a recent proposal to construct chiral gauge theories on the lattice using domain wall fermions. We restrict ourselves to the finite volume case, in which two domain walls are present, with modes of opposite chirality on each of them. We couple the chiral fermions on only one of the domain walls to a gauge field. In order to preserve gauge invariance, we have to add a scalar field, which gives rise to additional light mirror fermion and scalar modes. We argue that in an anomaly free model these extra modes would decouple if our model possesses a so-called strong coupling symmetric phase. However, our numerical results indicate that such a phase most probably does not exist. ---- Note: 9 Postscript figures are appended as uuencoded compressed tar file.Comment: 27p. Latex; UCSD/PTH 93-28, Wash. U. HEP/93-6

    Spin Disorder and Magnetic Anisotropy in Fe3O4 Nanoparticles

    Full text link
    We have studied the magnetic behavior of dextran-coated magnetite (Fe3_3O4_4) nanoparticles with median particle size \left=8 nmnm. Magnetization curves and in-field M\"ossbauer spectroscopy measurements showed that the magnetic moment MSM_S of the particles was much smaller than the bulk material. However, we found no evidence of magnetic irreversibility or non-saturating behavior at high fields, usually associated to spin canting. The values of magnetic anisotropy KeffK_{eff} from different techniques indicate that surface or shape contributions are negligible. It is proposed that these particles have bulk-like ferrimagnetic structure with ordered A and B sublattices, but nearly compensated magnetic moments. The dependence of the blocking temperature with frequency and applied fields, TB(H,ω)T_B(H,\omega), suggests that the observed non-monotonic behavior is governed by the strength of interparticle interactions.Comment: 11 pages, 7 figures, 3 Table

    MOD/R : A knowledge assisted approach towards top-down only CMOS VLSI design

    Get PDF
    MOD/R models all views on the design space in relations. This is achieved by eliminating the package constraints, as are apparent in PCB oriented hardware description languages. Assisted by knowledge engineering it allows for a top-down, mostly hierarchical decomposition, virtually eliminating the need for bottom-up assembly

    General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation

    Get PDF
    An evolution of radiant shock wave front is considered in the framework of a recently presented method to study self-gravitating relativistic spheres, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post-quasistatic approximation. The spherical matter configuration is divided into two regions by the shock and each side of the interface having a different equation of state and anisotropic phase. In order to simulate dissipation effects due to the transfer of photons and/or neutrinos within the matter configuration, we introduce the flux factor, the variable Eddington factor and a closure relation between them. As we expected the strength of the shock increases the speed of the fluid to relativistic values and for some critical ones is larger than light speed. In addition, we find that energy conditions are very sensible to the anisotropy, specially the strong one. As a special feature of the model, we find that the contribution of the matter and radiation to the radial pressure are the same order of magnitude as in the mant as in the core, moreover, in the core radiation pressure is larger than matter pressure.Comment: To appear in Journal of Physics:Conference Series:"XXIX Spanish Relativity Meeting (ERE 2006): Einstein's Legacy: From the Theoretical Paradise to Astrophysical Observations
    • …
    corecore