824 research outputs found
Coexistence of charge density wave and spin-Peierls orders in quarter-filled quasi-one dimensional correlated electron systems
Charge and spin-Peierls instabilities in quarter-filled (n=1/2) compounds
consisting of coupled ladders and/or zig-zag chains are investigated. Hubbard
and t-J models including local Holstein and/or Peierls couplings to the lattice
are studied by numerical techniques. Next nearest neighbor hopping and magnetic
exchange, and short-range Coulomb interactions are also considered. We show
that, generically, these systems undergo instabilities towards the formation of
Charge Density Waves, Bond Order Waves and (generalized) spin-Peierls modulated
structures. Moderate electron-electron and electron-lattice couplings can lead
to a coexistence of these three types of orders. In the ladder, a zig-zag
pattern is stabilized by the Holstein coupling and the nearest-neighbor Coulomb
repulsion. In the case of an isolated chain, bond-centered and site-centered
2k_F and 4k_F modulations are induced by the local Holstein coupling. In
addition, we show that, in contrast to the ladders, a small charge ordering in
the chains, strongly enhances the spin-Peierls instability. Our results are
applied to the NaV_2O_5 compound (trellis lattice) and various phases with
coexisting charge disproportionation and spin-Peierls order are proposed and
discussed in the context of recent experiments. The role of the long-range
Coulomb potential is also outlined.Comment: 10 pages, Revtex, 10 encapsulated figure
Study of impurities in spin-Peierls systems including lattice relaxation
The effects of magnetic and non-magnetic impurities in spin-Peierls systems
are investigated allowing for lattice relaxation and quantum fluctuations. We
show that, in isolated chains, strong bonds form next to impurities, leading to
the appearance of magneto-elastic solitons. Generically, these solitonic
excitations do not bind to impurities. However, interchain elastic coupling
produces an attractive potential at the impurity site which can lead to the
formation of bound states. In addition, we predict that small enough chain
segments do not carry magnetic moments at the ends
High Energy Hadron-Nucleus Cross Sections and Their Extrapolation to Cosmic Ray Energies
Old models of the scattering of composite systems based on the Glauber model
of multiple diffraction are applied to hadron-nucleus scattering. We obtain an
excellent fit with only two free parameters to the highest energy
hadron-nucleus data available. Because of the quality of the fit and the
simplicity of the model it is argued that it should continue to be reliable up
to the highest cosmic ray energies. Logarithmic extrapolations of proton-proton
and proton-antiproton data are used to calculate the proton-air cross sections
at very high energy. Finally, it is observed that if the exponential behavior
of the proton-antiproton diffraction peak continues into the few TeV energy
range it will violate partial wave unitarity. We propose a simple modification
that will guarantee unitarity throughout the cosmic ray energy region.Comment: 8 pages, 9 postscript figures. This manuscript replaces a partial
manuscript incorrectly submitte
Application of the saleâdown methodology to study the effect of mixing on Trichoderma reesei physiology and enzyme production
International audienceIn this study, the effect of oxygen oscillations on enzyme production has been investigated during cultures of T. reesei. By using 2 bioreactors a decrease of 20% in the specific production rate and yield for long-time cycling exposure to anaerobic conditions (15 min) was observed, whereas a short cycle of anaerobiosis (3-4 min) was sufficient by using 1 bioreactor. Our results indicate the sensitivity of T. reesei to anaerobiosis and the fact that the metabolic response is complex and not immediate because it depends on the distribution of the residence times of the microorganisms in the aerated or nonâaerated zones
Thermodynamical Properties of a Spin 1/2 Heisenberg Chain Coupled to Phonons
We performed a finite-temperature quantum Monte Carlo simulation of the
one-dimensional spin-1/2 Heisenberg model with nearest-neighbor interaction
coupled to Einstein phonons. Our method allows to treat easily up to 100
phonons per site and the results presented are practically free from truncation
errors. We studied in detail the magnetic susceptibility, the specific heat,
the phonon occupation, the dimerization, and the spin-correlation function for
various spin-phonon couplings and phonon frequencies. In particular we give
evidence for the transition from a gapless to a massive phase by studying the
finite-size behavior of the susceptibility. We also show that the dimerization
is proportional to for .Comment: 10 pages, 17 Postscript Figure
What do experimental data "say" about growth of hadronic total cross-section?
We reanalyse and high energy data of the elastic scattering
above GeV on the total cross-section and on the
forward -ratio for various models of Pomeron, utilizing two methods. The
first one is based on analytic amplitudes, the other one relies on assumptions
for and on dispersion relation for . We argue that it is
not possible, from fitting only existing data for forward scattering, to select
a definite asymptotic growth with the energy of . We find
equivalent fits to the data together with a logarithmic Pomeron giving a
behavior , and with
a supercritical Pomeron giving a behavior ,
.Comment: LaTeX, 18 pages, 5 eps figures included, to be published in Il Nuovo
Ciment
A comparative study on two characteristic parametrizations for high energy pp and \=pp total cross sections
Available high energy data for both pp and \=pp total cross sections ($ 5 \
GeV \ < \ \sqrt s \ < \ 1.8 \ TeV\chi^2/d.o.f.s^{\gamma \approx 2}s^{\epsilon}$) one
Clay fine fissuring monitoring using miniature geo-electrical resistivity arrays
Abstract This article describes a miniaturised electrical imaging (resistivity tomography) technique to map the cracking pattern of a clay model. The clay used was taken from a scaled flood embankment built to study the fine fissuring due to desiccation and breaching process in flooding conditions. The potential of using a miniature array of electrodes to follow the evolution of the vertical cracks and number them during the drying process was explored. The imaging technique generated two-dimensional contoured plots of the resistivity distribution within the model before and at different stages of the desiccation process. The change in resistivity associated with the widening of the cracks were monitored as a function of time. Experiments were also carried out using a selected conductive gel to slow down the transport process into the cracks to improve the scanning capabilities of the equipment. The main vertical clay fissuring network was obtained after inversion of the experimental resistivity measurements and validated by direct observations
Antiferromagnetism in doped anisotropic two-dimensional spin-Peierls systems
We study the formation of antiferromagnetic correlations induced by impurity
doping in anisotropic two-dimensional spin-Peierls systems. Using a mean-field
approximation to deal with the inter-chain magnetic coupling, the intra-chain
correlations are treated exactly by numerical techniques. The magnetic coupling
between impurities is computed for both adiabatic and dynamical lattices and is
shown to have an alternating sign as a function of the impurity-impurity
distance, hence suppressing magnetic frustration. An effective model based on
our numerical results supports the coexistence of antiferromagnetism and
dimerization in this system.Comment: 5 pages, 4 figures; final version to appear in Phys. Rev.
From spinons to magnons in explicit and spontaneously dimerized antiferromagnetic chains
We reconsider the excitation spectra of a dimerized and frustrated
antiferromagnetic Heisenberg chain. This model is taken as the simpler example
of compiting spontaneous and explicit dimerization relevant for Spin-Peierls
compounds. The bosonized theory is a two frequency Sine-Gordon field theory. We
analize the excitation spectrum by semiclassical methods. The elementary
triplet excitation corresponds to an extended magnon whose radius diverge for
vanishing dimerization. The internal oscilations of the magnon give rise to a
series of excited state until another magnon is emited and a two magnon
continuum is reached. We discuss, for weak dimerization, in which way the
magnon forms as a result of a spinon-spinon interaction potential.Comment: 5 pages, latex, 3 figures embedded in the tex
- âŠ