2,697 research outputs found
Non-minimal couplings, quantum geometry and black hole entropy
The black hole entropy calculation for type I isolated horizons, based on
loop quantum gravity, is extended to include non-minimally coupled scalar
fields. Although the non-minimal coupling significantly modifies quantum
geometry, the highly non-trivial consistency checks for the emergence of a
coherent description of the quantum horizon continue to be met. The resulting
expression of black hole entropy now depends also on the scalar field precisely
in the fashion predicted by the first law in the classical theory (with the
same value of the Barbero-Immirzi parameter as in the case of minimal
coupling).Comment: 14 pages, no figures, revtex4. Section III expanded and typos
correcte
Quantum geometry and black hole entropy: inclusion of distortion and rotation
Equilibrium states of black holes can be modelled by isolated horizons. If
the intrinsic geometry is spherical, they are called type I while if it is
axi-symmetric, they are called type II. The detailed theory of geometry of
quantum type I horizons and the calculation of their entropy can be generalized
to type II, thereby including arbitrary distortions and rotations. The leading
term in entropy of large horizons is again given by 1/4th of the horizon area
for the same value of the Barbero-Immirzi parameter as in the type I case.
Ideas and constructions underlying this extension are summarized.Comment: Text based on parallel talk given at the VI Mexican School on
Gravitation and Mathematical Physics: ``Approaches to Quantum Gravity'', held
in Playa del Carmen, Mexico, in November of 2004; IGPG preprint number added;
metadata abstract correcte
2+1 Gravity without dynamics
A three dimensional generally covariant theory is described that has a 2+1
canonical decomposition in which the Hamiltonian constraint, which generates
the dynamics, is absent. Physical observables for the theory are described and
the classical and quantum theories are compared with ordinary 2+1 gravity.Comment: 9 page
On obtaining classical mechanics from quantum mechanics
Constructing a classical mechanical system associated with a given quantum
mechanical one, entails construction of a classical phase space and a
corresponding Hamiltonian function from the available quantum structures and a
notion of coarser observations. The Hilbert space of any quantum mechanical
system naturally has the structure of an infinite dimensional symplectic
manifold (`quantum phase space'). There is also a systematic, quotienting
procedure which imparts a bundle structure to the quantum phase space and
extracts a classical phase space as the base space. This works straight
forwardly when the Hilbert space carries weakly continuous representation of
the Heisenberg group and recovers the linear classical phase space
. We report on how the procedure also allows
extraction of non-linear classical phase spaces and illustrate it for Hilbert
spaces being finite dimensional (spin-j systems), infinite dimensional but
separable (particle on a circle) and infinite dimensional but non-separable
(Polymer quantization). To construct a corresponding classical dynamics, one
needs to choose a suitable section and identify an effective Hamiltonian. The
effective dynamics mirrors the quantum dynamics provided the section satisfies
conditions of semiclassicality and tangentiality.Comment: revtex4, 24 pages, no figures. In the version 2 certain technical
errors in section I-B are corrected, the part on WKB (and section II-B) is
removed, discussion of dynamics and semiclassicality is extended and
references are added. Accepted for publication on Classical and Quantum
Gravit
Spherically Symmetric Quantum Horizons
Isolated horizon conditions specialized to spherical symmetry can be imposed
directly at the quantum level. This answers several questions concerning
horizon degrees of freedom, which are seen to be related to orientation, and
its fluctuations at the kinematical as well as dynamical level. In particular,
in the absence of scalar or fermionic matter the horizon area is an approximate
quantum observable. Including different kinds of matter fields allows to probe
several aspects of the Hamiltonian constraint of quantum geometry that are
important in inhomogeneous situations.Comment: 4 pages, RevTeX
Mechanics of Rotating Isolated Horizons
Black hole mechanics was recently extended by replacing the more commonly
used event horizons in stationary space-times with isolated horizons in more
general space-times (which may admit radiation arbitrarily close to black
holes). However, so far the detailed analysis has been restricted to
non-rotating black holes (although it incorporated arbitrary distortion, as
well as electromagnetic, Yang-Mills and dilatonic charges). We now fill this
gap by first introducing the notion of isolated horizon angular momentum and
then extending the first law to the rotating case.Comment: 31 pages REVTeX, 1 eps figure; Minor typos corrected and a footnote
adde
Constructing Hamiltonian quantum theories from path integrals in a diffeomorphism invariant context
Osterwalder and Schrader introduced a procedure to obtain a (Lorentzian)
Hamiltonian quantum theory starting from a measure on the space of (Euclidean)
histories of a scalar quantum field. In this paper, we extend that construction
to more general theories which do not refer to any background, space-time
metric (and in which the space of histories does not admit a natural linear
structure). Examples include certain gauge theories, topological field theories
and relativistic gravitational theories. The treatment is self-contained in the
sense that an a priori knowledge of the Osterwalder-Schrader theorem is not
assumed.Comment: Plain Latex, 25 p., references added, abstract and title changed
(originally :``Osterwalder Schrader Reconstruction and Diffeomorphism
Invariance''), introduction extended, one appendix with illustrative model
added, accepted by Class. Quantum Gra
Phenomenological implications of an alternative Hamiltonian constraint for quantum cosmology
In this paper we review a model based on loop quantum cosmology that arises
from a symmetry reduction of the self dual Plebanski action. In this
formulation the symmetry reduction leads to a very simple Hamiltonian
constraint that can be quantized explicitly in the framework of loop quantum
cosmology. We investigate the phenomenological implications of this model in
the semi-classical regime and compare those with the known results of the
standard Loop Quantum Cosmology.Comment: 10 pages, 7 figure
Geometry of Generic Isolated Horizons
Geometrical structures intrinsic to non-expanding, weakly isolated and
isolated horizons are analyzed and compared with structures which arise in
other contexts within general relativity, e.g., at null infinity. In
particular, we address in detail the issue of singling out the preferred
normals to these horizons required in various applications. This work provides
powerful tools to extract invariant, physical information from numerical
simulations of the near horizon, strong field geometry. While it complements
the previous analysis of laws governing the mechanics of weakly isolated
horizons, prior knowledge of those results is not assumed.Comment: 37 pages, REVTeX; Subsections V.B and V.C moved to a new Appenedix to
improve the flow of main argument
Photon inner product and the Gauss linking number
It is shown that there is an interesting interplay between self-duality, loop
representation and knots invariants in the quantum theory of Maxwell fields in
Minkowski space-time. Specifically, in the loop representation based on
self-dual connections, the measure that dictates the inner product can be
expressed as the Gauss linking number of thickened loops.Comment: 18 pages, Revtex. No figures. To appear in Class. Quantum Gra
- …
