261 research outputs found

    BIM AND UAV PHOTOGRAMMETRY FOR SPATIAL STRUCTURES SUSTAINABILITY INVENTORY

    Get PDF
    The paper describes the basic concept of the integration between UAV surveying results and BIM. As a case study, it was considered the large spatial shell that served as a hangar for the Antonov An-225 Mriya, the largest in the world strategic cargo aircraft with a maximum take-off weight of 640 tons. Due to an explosion inside, the hangar and aircraft were significantly damaged. The key point of the study is the damage estimation by analysis and modeling of this unique engineering structure. The study has included several steps: hangar structure documentation (before damage), UAV surveying of the hangar (for ongoing condition estimation), terrestrial measurements for the control, and integration of 3D models inside BIM for structural analysis. Deploying the UAV allowed us to generate detailed 3D models of the hangar by means of photogrammetry and computer vision methods. The inclusion of the field geodetic measurements into the processing made it possible to increase significantly positioning accuracy of the results to the sub-centimeter level and served as a ground truth for the models obtained based on UAV sensors data. The results proved the feasibility of BIM and UAV photogrammetry for the hangar stability model development and practical verification based on geospatial and structural engineering data

    Vortical and Wave Modes in 3D Rotating Stratified Flows: Random Large Scale Forcing

    Full text link
    Utilizing an eigenfunction decomposition, we study the growth and spectra of energy in the vortical and wave modes of a 3D rotating stratified fluid as a function of ϵ=f/N\epsilon = f/N. Working in regimes characterized by moderate Burger numbers, i.e. Bu=1/ϵ2<1Bu = 1/\epsilon^2 < 1 or Bu1Bu \ge 1, our results indicate profound change in the character of vortical and wave mode interactions with respect to Bu=1Bu = 1. As with the reference state of ϵ=1\epsilon=1, for ϵ<1\epsilon < 1 the wave mode energy saturates quite quickly and the ensuing forward cascade continues to act as an efficient means of dissipating ageostrophic energy. Further, these saturated spectra steepen as ϵ\epsilon decreases: we see a shift from k1k^{-1} to k5/3k^{-5/3} scaling for kf<k<kdk_f < k < k_d (where kfk_f and kdk_d are the forcing and dissipation scales, respectively). On the other hand, when ϵ>1\epsilon > 1 the wave mode energy never saturates and comes to dominate the total energy in the system. In fact, in a sense the wave modes behave in an asymmetric manner about ϵ=1\epsilon = 1. With regard to the vortical modes, for ϵ1\epsilon \le 1, the signatures of 3D quasigeostrophy are clearly evident. Specifically, we see a k3k^{-3} scaling for kf<k<kdk_f < k < k_d and, in accord with an inverse transfer of energy, the vortical mode energy never saturates but rather increases for all k<kfk < k_f. In contrast, for ϵ>1\epsilon > 1 and increasing, the vortical modes contain a progressively smaller fraction of the total energy indicating that the 3D quasigeostrophic subsystem plays an energetically smaller role in the overall dynamics.Comment: 18 pages, 6 figs. (abbreviated abstract

    Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor

    Get PDF
    Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in non-hematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP)). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects

    First study of radiation hardness of lead tungstate crystals at low temperatures

    Get PDF
    The electromagnetic calorimeter of PANDA at the FAIR facility will rely on an operation of lead tungstate (PWO) scintillation crystals at temperatures near -25 deg.C to provide sufficient resolution for photons in the energy range from 8 GeV down to 10 MeV. Radiation hardness of PWO crystals was studied at the IHEP (Protvino) irradiation facility in the temperature range from room temperature down to -25 deg.C. These studies have indicated a significantly different behaviour in the time evolution of the damaging processes well below room temperature. Different signal loss levels at the same dose rate, but at different temperatures were observed. The effect of a deep suppression of the crystal recovery process at temperatures below 0 deg.C has been seen.Comment: 10 pages 7 figure
    corecore