4 research outputs found
Imperfect Dark Energy from Kinetic Gravity Braiding
We introduce a large class of scalar-tensor models with interactions
containing the second derivatives of the scalar field but not leading to
additional degrees of freedom. These models exhibit peculiar features, such as
an essential mixing of scalar and tensor kinetic terms, which we have named
kinetic braiding. This braiding causes the scalar stress tensor to deviate from
the perfect-fluid form. Cosmology in these models possesses a rich
phenomenology, even in the limit where the scalar is an exact Goldstone boson.
Generically, there are attractor solutions where the scalar monitors the
behaviour of external matter. Because of the kinetic braiding, the position of
the attractor depends both on the form of the Lagrangian and on the external
energy density. The late-time asymptotic of these cosmologies is a de Sitter
state. The scalar can exhibit phantom behaviour and is able to cross the
phantom divide with neither ghosts nor gradient instabilities. These features
provide a new class of models for Dark Energy. As an example, we study in
detail a simple one-parameter model. The possible observational signatures of
this model include a sizeable Early Dark Energy and a specific equation of
state evolving into the final de-Sitter state from a healthy phantom regime.Comment: 41 pages, 7 figures. References and some clarifying language added.
This version was accepted for publication in JCA
Hessence: A New View of Quintom Dark Energy
Recently a lot of attention has been drawn to build dark energy model in
which the equation-of-state parameter can cross the phantom divide .
One of models to realize crossing the phantom divide is called quintom model,
in which two real scalar fields appears, one is a normal scalar field and the
other is a phantom-type scalar field. In this paper we propose a non-canonical
complex scalar field as the dark energy, which we dub ``hessence'', to
implement crossing the phantom divide, in a similar sense as the quintom dark
energy model. In the hessence model, the dark energy is described by a single
field with an internal degree of freedom rather than two independent real
scalar fields. However, the hessence is different from an ordinary complex
scalar field, we show that the hessence can avoid the difficulty of the Q-balls
formation which gives trouble to the spintessence model (An ordinary complex
scalar field acts as the dark energy). Furthermore, we find that, by choosing a
proper potential, the hessence could correspond to a Chaplygin gas at late
times.Comment: Latex2e, 12 pages, no figure; v2: discussions and references added,
14 pages, 3 eps figures; v3: published versio
Dark energy problem: from phantom theory to modified Gauss-Bonnet gravity
The solution of dark energy problem in the models without scalars is
presented. It is shown that late-time accelerating cosmology may be generated
by the ideal fluid with some implicit equation of state. The universe evolution
within modified Gauss-Bonnet gravity is considered. It is demonstrated that
such gravitational approach may predict the (quintessential, cosmological
constant or transient phantom) acceleration of the late-time universe with
natural transiton from deceleration to acceleration (or from non-phantom to
phantom era in the last case).Comment: LaTeX 8 pages, prepared for the Proceedings of QFEXT'05, minor
correctons, references adde