4 research outputs found

    Imperfect Dark Energy from Kinetic Gravity Braiding

    Full text link
    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.Comment: 41 pages, 7 figures. References and some clarifying language added. This version was accepted for publication in JCA

    Hessence: A New View of Quintom Dark Energy

    Full text link
    Recently a lot of attention has been drawn to build dark energy model in which the equation-of-state parameter ww can cross the phantom divide w=1w=-1. One of models to realize crossing the phantom divide is called quintom model, in which two real scalar fields appears, one is a normal scalar field and the other is a phantom-type scalar field. In this paper we propose a non-canonical complex scalar field as the dark energy, which we dub ``hessence'', to implement crossing the phantom divide, in a similar sense as the quintom dark energy model. In the hessence model, the dark energy is described by a single field with an internal degree of freedom rather than two independent real scalar fields. However, the hessence is different from an ordinary complex scalar field, we show that the hessence can avoid the difficulty of the Q-balls formation which gives trouble to the spintessence model (An ordinary complex scalar field acts as the dark energy). Furthermore, we find that, by choosing a proper potential, the hessence could correspond to a Chaplygin gas at late times.Comment: Latex2e, 12 pages, no figure; v2: discussions and references added, 14 pages, 3 eps figures; v3: published versio

    Dark energy problem: from phantom theory to modified Gauss-Bonnet gravity

    Full text link
    The solution of dark energy problem in the models without scalars is presented. It is shown that late-time accelerating cosmology may be generated by the ideal fluid with some implicit equation of state. The universe evolution within modified Gauss-Bonnet gravity is considered. It is demonstrated that such gravitational approach may predict the (quintessential, cosmological constant or transient phantom) acceleration of the late-time universe with natural transiton from deceleration to acceleration (or from non-phantom to phantom era in the last case).Comment: LaTeX 8 pages, prepared for the Proceedings of QFEXT'05, minor correctons, references adde

    Anisotropic cosmology with a dilaton field coupled to ghost dark energy

    No full text
    corecore