247 research outputs found

    Analysis and design of model predictive control frameworks for dynamic operation -- An overview

    Full text link
    This article provides an overview of model predictive control (MPC) frameworks for dynamic operation of nonlinear constrained systems. Dynamic operation is often an integral part of the control objective, ranging from tracking of reference signals to the general economic operation of a plant under online changing time-varying operating conditions. We focus on the particular challenges that arise when dealing with such more general control goals and present methods that have emerged in the literature to address these issues. The goal of this article is to present an overview of the state-of-the-art techniques, providing a diverse toolkit to apply and further develop MPC formulations that can handle the challenges intrinsic to dynamic operation. We also critically assess the applicability of the different research directions, discussing limitations and opportunities for further researc

    Linear tracking MPC for nonlinear systems Part I: The model-based case

    Full text link
    We develop a tracking model predictive control (MPC) scheme for nonlinear systems using the linearized dynamics at the current state as a prediction model. Under reasonable assumptions on the linearized dynamics, we prove that the proposed MPC scheme exponentially stabilizes the optimal reachable equilibrium w.r.t. a desired target setpoint. Our theoretical results rely on the fact that, close to the steady-state manifold, the prediction error of the linearization is small and hence, we can slide along the steady-state manifold towards the optimal reachable equilibrium. The closed-loop stability properties mainly depend on a cost matrix which allows us to trade off performance, robustness, and the size of the region of attraction. In an application to a nonlinear continuous stirred tank reactor, we show that the scheme, which only requires solving a convex quadratic program online, has comparable performance to a nonlinear MPC scheme while being computationally significantly more efficient. Further, our results provide the basis for controlling nonlinear systems based on data-dependent linear prediction models, which we explore in our companion paper

    A novel constraint-tightening approach for robust data-driven predictive control

    Get PDF
    In this paper, we present a data-driven model predictive control (MPC) scheme that is capable of stabilizing unknown linear time-invariant systems under the influence of process disturbances. To this end, Willems' lemma is used to predict the future behavior of the system. This allows the entire scheme to be set up using only a priori measured data and knowledge of an upper bound on the system order. First, we develop a state-feedback MPC scheme, based on input-state data, which guarantees closed-loop practical exponential stability and recursive feasibility as well as closed-loop constraint satisfaction. The scheme is extended by a suitable constraint tightening, which can also be constructed using only data. In order to control a priori unstable systems, the presented scheme contains a prestabilizing controller and an associated input constraint tightening. We first present the proposed data-driven MPC scheme for the case of full state measurements, and also provide extensions for obtaining similar closed-loop guarantees in case of output feedback. The presented scheme is applied to a numerical example
    corecore