9,629 research outputs found

    Thermal Pure Quantum States at Finite Temperature

    Full text link
    An equilibrium state can be represented by a pure quantum state, which we call a thermal pure quantum (TPQ) state. We propose a new TPQ state and a simple method of obtaining it. A single realization of the TPQ state suffices for calculating all statistical-mechanical properties, including correlation functions and genuine thermodynamic variables, of a quantum system at finite temperature.Comment: 5 pages, 3 figures, A shortened version will appear in Phys. Rev. Let

    Superradiant scattering of electromagnetic waves emitted from disk around Kerr black holes

    Full text link
    We study electromagnetic perturbations around a Kerr black hole surrounded by a thin disk on the equatorial plane. Our main purpose is to reveal the black hole superradiance of electromagnetic waves emitted from the disk surface. The outgoing Kerr-Schild field is used to describe the disk emission, and the superradiant scattering is represented by a vacuum wave field which is added to satisfy the ingoing condition on the horizon. The formula to calculate the energy flux on the disk surface is presented, and the energy transport in the disk-black hole system is investigated. Within the low-frequency approximation we find that the energy extracted from the rotating black hole is mainly transported back to the disk, and the energy spectrum of electromagnetic waves observed at infinity is also discussed.Comment: 15 pages, 2 figures, accepted for publication in Physical Review

    Existence of One-Body Barrier Revealed in Deep Sub-Barrier Fusion

    Get PDF
    Based on the adiabatic picture for heavy-ion reactions, in which the neck formation in the one-body system is taken into account, we propose a two-step model for fusion cross sections at deep subbarrier energies. This model consists of the capture process in the two-body potential pocket, which is followed by the penetration of the adiabatic one-body potential to reach a compound state after the touching configuration. We describe the former process with the coupled-channels framework, while the latter with the WKB approximation by taking into account the coordinate dependent inertia mass. The effect of the one-body barrier is important at incident energies below the potential energy at the touching configuration. We show that this model well accounts for the steep fall-off phenomenon of fusion cross sections at deep subbarrier energies for the 64^{64}Ni+64^{64}Ni and 58^{58}Ni+58^{58}Ni reactions.Comment: 4 pages, 3 figure

    Deterministic implementation of weak quantum cubic nonlinearity

    Full text link
    We propose a deterministic implementation of weak cubic nonlinearity, which is a basic building block of a full scale CV quantum computation. Our proposal relies on preparation of a specific ancillary state and transferring its nonlinear properties onto the desired target by means of deterministic Gaussian operations and feed-forward. We show that, despite the imperfections arising from the deterministic nature of the operation, the weak quantum nonlinearity can be implemented and verified with the current level of technology.Comment: 4 pages, 2 figure
    corecore