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Based on the adiabatic picture for heavy-ion reactions, in which the neck formation in the one-body system
is taken into account, we propose a two-step model for fusion cross sections at deep sub-barrier energies. This
model consists of the capture process in the two-body potential pocket, which is followed by the penetration
of the adiabatic one-body potential to reach a compound state after the touching configuration. We describe
the former process with the coupled-channels framework, while the latter with the Wentzel-Kramers-Brillouin
(WKB) approximation by taking into account the coordinate dependent inertia mass. The effect of the one-body
barrier is important at incident energies below the potential energy at the touching configuration. We show that
this model well accounts for the steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies
for the 64Ni+64Ni and 58Ni+58Ni reactions.
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Heavy-ion fusion reactions at low incident energies provide
a good opportunity to study the quantum tunneling phenomena
of many-particle systems. Because of a strong cancellation
between the repulsive Coulomb interaction and an attractive
short-range nuclear interaction between the colliding nuclei,
a potential barrier, referred to as the Coulomb barrier, is
formed, which has to be overcome in order for fusion to take
place. In heavy-ion reactions, because of a strong absorption
inside the Coulomb barrier, it has been usually assumed
that the compound nucleus is automatically formed once the
Coulomb barrier has been overcome. The coupled-channels
(CC) approach based on this picture has been successful at
energies close to the Coulomb barrier, where the inner turning
point of the Coulomb barrier is well outside the touching point
of the colliding nuclei [1].

Recently, fusion cross sections have been measured for
the first time at deep sub-barrier energies for medium-heavy
mass systems, such as 64Ni+64Ni, 58Ni+58Ni, and 64Ni+89Y
[2,3]. The experimental data indicate that fusion cross sections
fall off much faster than the exponential energy dependence
expected from a usual tunneling picture, as the incident energy
decreases. Although it has been argued that this hindrance of
fusion cross sections may be explained if one phenomenolog-
ically introduces a considerably diffuse nuclear potential [4],
the physical origin of the steep fall-off phenomenon has not
yet been understood (see also Ref. [5]).

At energies well below the Coulomb barrier, the inner
turning point is comparable to, or even smaller than, the
touching point. In that situation, the frozen density approx-
imation, which has often been employed in constructing the
internucleus potential [6], breaks down, and one has to treat
explicitly the dynamics after the touching configuration. In
this connection, Mişicu and Esbensen have recently proposed
a potential energy with a shallow pocket based still on the
frozen density approximation [7,8]. That is, the outer region of
the potential is constructed with the double folding procedure
[6], while the phenomenological repulsive core due to the

saturation property of nuclear matter is taken into account in
the inner region [7,8]. It was shown that the CC calculation
with such shallow potential well reproduces the steep fall-off
phenomenon for the 64Ni+64Ni reaction [7,8].

The approach of Mişicu and Esbensen is based on the
sudden picture for nuclear reaction, that is, the reaction takes
place so rapidly that the colliding nuclei overlap with each
other without changing their density. However, it is not obvious
whether the fusion dynamics at deep sub-barrier energy is close
to the sudden limit or to the adiabatic limit, where the nuclear
reaction is assumed to take place much more slowly than
the dynamical density variation of colliding nuclei. Since one
would not know a priori which approach is more reasonable,
it is important to investigate both the possibilities [9].

In this Brief Report, we investigate the adiabatic approach
in explaining the steep fall-off phenomenon of fusion cross
sections. Notice that both the sudden and the adiabatic
approaches would lead to a similar result to each other in
the region where the colliding nuclei do not significantly
overlap. Our model here is to consider the fission-like adiabatic
potential energy surface with the neck configuration after the
colliding nuclei touch to each other. This one-body potential
acts like an inner barrier which has to be overcome to reach
the compound state. It is this residual effect which we would
like to discuss in connection to fusion cross sections at deep
sub-barrier energies.

In order to illustrate how the adiabatic approach works,
Fig. 1 shows the potential energy for the 64Ni+64Ni reaction
obtained with the Krappe-Nix-Sierk (KNS) model [10] as a
function of the center-of-mass distance R. In the KNS model,
the saturation property of nuclear matter is phenomenologi-
cally taken into account. It has also been shown that the KNS
model is consistent with the potential obtained with the energy
density formalism with the Skyrme SkM∗ interaction [11].
The parameters in the KNS model are taken as a0 = 0.68 fm,
as = 21.33 MeV, and κs = 2.378 from FRLDM2002 [12].
The radius parameter is fine-tuned as r0 = 1.204 fm in order
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FIG. 1. (Color online) One- and two-body potential energies for
64Ni+64Ni obtained with the KNS model as a function of the center-
of-mass distance. The shape for the one-body configuration described
by the Lemniscatoids parametrization is also shown. The filled circle
and square denote the touching configuration and the ground state
of the compound system, respectively. The dotted line is the sudden
potential taken from Ref. [7].

to fit the experimental fusion cross section at high incident
energies. The touching configuration is denoted by the filled
circle in the figure. For distances larger than the touching
point, the potential energy for the two-body system is calcu-
lated as the sum of the Coulomb energy for two point charges
and the nuclear energy given by Eq. (17) in Ref. [10]. For
the one-body system after touching two nuclei, we assume
that the shape configuration is described by the Lemniscatoids
parametrization (see the inset in the figure) [13], and calculate
the Coulomb and surface integrals for each configuration [10].

We find that the value of the potential energy at the
touching configuration Vtouch is 88.61 MeV. This is exactly
the energy Es at which the experimental fusion cross section
start to fall off abruptly in this reaction [2]. This strongly
suggests a correlation between the observed fusion hindrance
and a process after the two nuclei overlap each other. For a
comparison, the sudden potential which Mişicu and Esbensen
considered [7] is denoted by the dotted line in the figure. We
find that the adiabatic KNS potential and the sudden potential
almost coincide with each other outside the touching radius.

In order to describe the two-body process from a large
distance to the touching point, we employ the standard CC
formalism by taking into account inelastic excitations in
the colliding nuclei. However, it is not straightforward to
extend this treatment to the one-body process. In the CC
formalism, the total wave function is expanded with the
asymptotic intrinsic states of the isolated nuclei, in which one
usually restricts the model space only to those states which
are coupled strongly to the ground state. Apparently, such
asymptotic basis is not efficient to represent the total wave
function for the one-body dinuclear system, and in principle
one would require to include all the intrinsic states in the
complete set. This is almost impossible in practice. Moreover,
the adiabatic one-body potential with the neck configuration
already includes a large part of the channel coupling effects,
and the application of the standard CC formalism would result
in the double counting of the CC effect.

In order to avoid these difficulties, we here propose a simple
phenomenological model, in which the two- and one-body
processes are defined independently and time-sequentially.
The fusion cross section in this two-step model then reads

σ (E) = πh̄2

2µE

∑
�

(2� + 1)T�(E)P1bd(E, �), (1)

where µ and E denote the reduced mass and the incident
energy in the center-of-mass system, respectively. T� is the
capture probability for the two-body process estimated with
the CC method. P1bd is the penetrability for the adiabatic
one-body potential to reach the compound state after the
touching of two-body potential, which plays an important
role at energies below Vtouch (i.e., below the dashed line in
Fig. 1). At these energies, the fusion reaction is described
not only by the two-body potential, but the potential which
governs the fusion dynamics is switched from the two-body to
the adiabatic one-body potential at the touching configuration.
Only after overcoming (or penetrating through) these two- and
one-body barriers, the system can form a compound nucleus.
One may regard the one-body penetrability P1bd as a fusion
spectroscopic factor, which describes the overlap of wave
function between the scattering and the compound states.

In order to estimate the capture probability T� within the
two-step model, we cut the two-body potential at the touching
configuration as shown in the upper panel of Fig. 2. The
capture probability does not depend strongly on how to cut
the potential, since only the lowest two-body eigenpotential,
which is obtained by diagonalizing the coupling Hamiltonian
[1,14,15], is relevant at deep sub-barrier energies. As indicated
by the dashed line in the figure, the inner turning point for
the lowest eigenpotential is still far outside the touching
distance. Thus, the actual shape of the original potential in
the inner-barrier region influences little on the penetrability.
Another view is that the incoming wave boundary condition

FIG. 2. (Color online) The internucleus potential used in the
two-step model. The solid line in the upper panel denotes the KNS
potential for the two-body process, which is cut at the touching
configuration, while the dashed line denotes the lowest two-body
eigenpotential. The dash-dotted line denotes the position at which the
incoming wave boundary condition (IWBC) is imposed in the CC
calculation. The solid line in the lower panel denotes the adiabatic
one-body potential inside the touching distance.
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(IWBC) is imposed in the CC calculation at the touching
distance so that the capture probability is defined at the
touching configuration, although in the actual calculations
we impose the IWBC at a distance somewhat smaller than
the touching point in order to avoid the numerical error. For
simplicity, we employ a sharp cutoff of the two-body potential
in this paper.

In order to estimate the one-body probability P1bd, we
use the WKB approximation. We assume that the reflected
flux in this process does not return to the two-body system,
but exits through the multidimensional potential energy sur-
face in the one-body system. The penetrability then reads
P1bd(E, �) = e−2S(E,�), where S(E, �) is the action integral
with the coordinate dependent inertia mass M(R),

S(E, �) =
∫ Rb

Ra

dR

√
2M(R)

h̄2 (E − V1bd(R, �)). (2)

Here, Ra and Rb are the inner and the outer turning points,
respectively (see the lower panel of Fig. 2). V1bd is the adiabatic
one-body potential energy given by

V1bd(R, �) = VC(R) + VS(R) + �(� + 1)h̄2

2I (R)
+ 2

7
ER, (3)

where VC, VS , and I are the Coulomb and the surface energies
and the moment of inertia for the rigid body, respectively. ER

denotes the centrifugal energy at the touching configuration.
Note that the last term in Eq. (3) comes from the conservation
of the energy and angular momentum between the two- and
one-body systems in the sticking limit [16].

We now apply the present two-step model to the fusion
reaction of the 64Ni+64Ni system. To this end, we use the KNS
potential energy already shown in Fig. 1. In the energy region
discussed in this paper, we expect that the the Lemniscatoids
parametrization provides a reasonable approximation, because
the neck formation is still small as shown in the inset of Fig. 1.
This parametrization has an advantage in that the configuration
is described with only one parameter for a symmetric system.
In addition, one obtains a smooth connection between the one-
and two-body potential energy curves, since the change of the
configuration shape across the touching point is rather natural.
As for the inertia mass M , we take the linear combination
between the irrotational-flow mass in the Werner-Wheeler
approximation [17], M0, and the reduced mass, µ. That is,
M(R) = k(M0(R) −µ) +µ, where k is the normalized factor.
The renormalization factor is necessary, since the liquid drop
model with the irrotational-flow mass M0 overestimates the
vibrational excitation energy h̄ω0 for the first 2+ state [18]. In
the calculations presented below, we use the normalization
factor, k = 46, which leads to the vibrational energy of
0.2 h̄ω0. Notice that the inertia mass M is in agreement with
the reduced mass µ at the touching configuration.

In order to compute the capture probability T� with the
CC framework with a sharp-cut KNS potential, where the
form of the coupling potential is not known, we modify
the computer code CCFULL [19] and estimate the nuclear
coupling term with the numerical derivative of the nuclear
potential up to the second order. The coupling scheme included
in the calculations, as well as the deformation parameters, are

FIG. 3. (Color online) Fusion cross sections for the 64Ni+64Ni
reaction calculated with the two-step model. The filled circles denote
the experimental fusion cross section, taken from Ref. [2]. The solid
and dotted lines denote the fusion cross section obtained with the
normalization factor for the mass inertia of k = 46 and 0, respectively.
The dashed line denotes the corresponding capture cross section. The
dash-dotted line is obtained with the Woods-Saxon potential, while
the dash-dot-dotted line shows the result in the absence of the channel
coupling effect.

the same as in Ref. [2]. To be more specific, we include the cou-
pling to the low-lying 2+ and 3− phonon states, two-phonon
quadrupole excitations, and all possible mutual excitations
both in target and projectile nuclei. The potential depth
in the inner-barrier region for the sharp-cut KNS potential
and the position of the IWBC are chosen as V0 = 70 MeV
and RIWBC = 8.0 fm, respectively. These values are deter-
mined using the the Woods-Saxon (WS) potential with VWS =
75.98 MeV, rWS = 1.19 fm, and aWS = 0.676 fm. We have
checked the numerical stability of the calculations at extremely
low incident energies by comparing the obtained result with
the one in the multichannel WKB approximation [20].

Figure 3 shows the fusion cross sections thus obtained.
It is remarkable that the fusion cross section obtained with
k = 46 for the coordinate dependent mass is in good
agreement with the experimental data (see the solid line).
The corresponding capture cross sections, obtained by setting
P1bd = 1 in Eq. (1), is denoted by the dashed line. As a
comparison, the result with the WS potential is also shown
by the dash-dotted line. We see that the discrepancy between
the capture cross section obtained with the WS potential and
the experimental data is improved by taking into account the
saturation property simulated by the KNS potential, and a
further improvement has been achieved by taking into account
the one-body barrier inside the touching configuration. The
result with k = 0 is denoted by the dotted line. The difference
between the solid and the dotted line is small, indicating
the negligible effect of the coordinate dependence of mass
inertia in the energy region discussed in this paper. We have
applied the two-step model also to the 58Ni+58Ni system.
We found that the agreement with the experimental excitation
function [21] is as good as for the 64Ni+64Ni system shown in
Fig. 3.

The present two-step model is in the opposite limit to
the recent sudden model of Mişicu and Esbensen [7,8]. As
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long as the fusion cross sections are concerned, both the
models provide similar results, at least for the 64Ni+64Ni
reaction. However, the origin for the fusion hindrance is
different between the two approaches. In our two-step model,
the fusion hindrance takes place due to the penetration of
the inner one-body potential. On the other hand, in the
sudden model, which uses a shallow potential, the hindrance
occurs because of the cutoff of the high angular-momentum
components in the fusion cross section. The average angular
momentum of the compound nuclei estimated with the sudden
model would therefore be much smaller than that of the
present adiabatic model. It is thus interesting to measure
the average angular momentum of the compound nucleus at
deep sub-barrier energies, in order to discriminate the two
approaches.

We would next like to comment on the recent experimental
data for 16O+197Au, where the fusion hindrance was not
observed [22]. We estimate the potential energy at the touching
configuration, Vtouch, to be 68.23 MeV if we use r0 = 1.2 fm
in the KNS potential. This is nearly equal to the lowest incident
energy performed in the experiment. Thus, the fusion cross
sections have to be measured at lower energies in order to
observe the fusion hindrance for this system, as has been
speculated in Ref. [22].

To summarize, we have proposed the adiabatic two-step
model for fusion cross sections at deep sub-barrier energies. By

applying this model to the 64Ni+64Ni and 58Ni+58Ni reactions,
we have shown that the penetration of the adiabatic one-body
potential with the neck configuration after the touching of two
colliding nuclei is responsible for the steep falloff of fusion
cross sections observed recently in the experimental data. The
effect of the one-body potential is important only at energies
below the potential energy at the touching configuration.
In this way, the two-step model provides a natural origin
for the threshold energy of fusion hindrance discussed in
Refs. [2,3].

In Ref. [5], it was shown that the experimental fusion cross
sections for the 16O+208Pb system follow the exponential
energy dependence at deep sub-barrier energies. This is
in contrast to the behavior in the medium-heavy systems
discussed in Refs. [2,3]. It would be an interesting future
work to apply the present two-step model to this reaction and
to clarify the difference between the mass asymmetric and
symmetric systems.
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