118 research outputs found

    Electrically driven convection in a thin annular film undergoing circular Couette flow

    Full text link
    We investigate the linear stability of a thin, suspended, annular film of conducting fluid with a voltage difference applied between its inner and outer edges. For a sufficiently large voltage, such a film is unstable to radially-driven electroconvection due to charges which develop on its free surfaces. The film can also be subjected to a Couette shear by rotating its inner edge. This combination is experimentally realized using films of smectic A liquid crystals. In the absence of shear, the convective flow consists of a stationary, azimuthally one-dimensional pattern of symmetric, counter-rotating vortex pairs. When Couette flow is applied, an azimuthally traveling pattern results. When viewed in a co-rotating frame, the traveling pattern consists of pairs of asymmetric vortices. We calculate the neutral stability boundary for arbitrary radius ratio α\alpha and Reynolds number Re{{\cal R} e} of the shear flow, and obtain the critical control parameter Rc(α,Re){\cal R}_c (\alpha, {{\cal R} e}) and the critical azimuthal mode number mc(α,Re){m_c (\alpha, {{\cal R} e})}. The Couette flow suppresses the onset of electroconvection, so that Rc(α,Re)>Rc(α,0){\cal R}_c (\alpha, {{\cal R} e}) > {\cal R}_c (\alpha,0). The calculated suppression is compared with experiments performed at α=0.56\alpha = 0.56 and 0Re0.220 \leq {{\cal R} e} \leq 0.22 .Comment: 17 pages, 2 column with 9 included eps figures. See also http://mobydick.physics.utoronto.c

    Microscopic Theory of Josephson Mesoscopic Constrictions

    Full text link
    We present a microscopic theory for the d.c. Josephson effect in model mesoscopic constrictions. Our method is based on a non-equilibrium Green function formalism which allows for a self-consistent determination of the order parameter profile along the constriction. The various regimes defined by the different length scales (Fermi wavelength λF\lambda_F, coherence length ξ0\xi_0 and constriction length LCL_C) can be analyzed, including the case where all these lengths are comparable. For the case λF<~(LC,ξ0)\lambda_F \tilde{<} (L_C,\xi_0) phase oscillations with spatial period λF/2\lambda_F/2 can be observed. In the case of LC>ξ0L_C>\xi_0 solutions with a phase-slip center inside the constriction can be found, in agreement with previous phenomenological theories.Comment: 4 pages (RevTex 3.0), 3 postscript figures available upon request, 312456-C

    Localization and Capacitance Fluctuations in Disordered Au Nano-junctions

    Full text link
    Nano-junctions, containing atomic-scale gold contacts between strongly disordered leads, exhibit different transport properties at room temperature and at low temperature. At room temperature, the nano-junctions exhibit conductance quantization effects. At low temperatures, the contacts exhibit Coulomb-Blockade. We show that the differences between the room-temperature and low temperature properties arise from the localization of electronic states in the leads. The charging energy and capacitance of the nano-junctions exhibit strong fluctuations with applied magnetic field at low temperature, as predicted theoretically.Comment: 20 pages 8 figure

    Quantum interference structures in the conductance plateaus of gold nanojunctions

    Get PDF
    The conductance of breaking metallic nanojunctions shows plateaus alternated with sudden jumps, corresponding to the stretching of stable atomic configurations and atomic rearrangements, respectively. We investigate the structure of the conductance plateaus both by measuring the voltage dependence of the plateaus' slope on individual junctions and by a detailed statistical analysis on a large amount of contacts. Though the atomic discreteness of the junction plays a fundamental role in the evolution of the conductance, we find that the fine structure of the conductance plateaus is determined by quantum interference phenomenon to a great extent.Comment: 4 pages, 4 figure

    Free-electron Model for Mesoscopic Force Fluctuations in Nanowires

    Full text link
    When two metal electrodes are separated, a nanometer sized wire (nanowire) is formed just before the contact breaks. The electrical conduction measured during this retraction process shows signs of quantized conductance in units of G_0=2e^2/h. Recent experiments show that the force acting on the wire during separation fluctuates, which has been interpreted as being due to atomic rearrangements. In this report we use a simple free electron model, for two simple geometries, and show that the electronic contribution to the force fluctuations is comparable to the experimentally found values, about 2 nN.Comment: 4 pages, 3 figures, reference correcte

    Effect of quantum interference in the nonlinear conductance of microconstrictions

    Full text link
    The influence of the interference of electron waves, which were scattered by single impurities, on nonlinear quantum conductance of metallic microconstrictions (as was recently investigated experimentally) is studied theoretically. The dependence of the interference pattern in the conductance G(V)G(V) on the contact diameter and the spatial distribution of impurities is analyzed. It is shown that the amplitude of conductance oscillation is strongly depended on the position of impurities inside the constriction.Comment: 6 pages, 4 figures, To appear in PR

    Electronic transport and vibrational modes in the smallest molecular bridge: H2 in Pt nanocontacts

    Full text link
    We present a state-of-the-art first-principles analysis of electronic transport in a Pt nanocontact in the presence of H2 which has been recently reported by Smit et al. in Nature 419, 906 (2002). Our results indicate that at the last stages of the breaking of the Pt nanocontact two basic forms of bridge involving H can appear. Our claim is, in contrast to Smit et al.'s, that the main conductance histogram peak at G approx 2e^2/h is not due to molecular H2, but to a complex Pt2H2 where the H2 molecule dissociates. A first-principles vibrational analysis that compares favorably with the experimental one also supports our claim .Comment: 5 pages, 3 figure

    Shot noise suppression at room temperature in atomic-scale Au junctions

    Full text link
    Shot noise encodes additional information not directly inferable from simple electronic transport measurements. Previous measurements in atomic-scale metal junctions at cryogenic temperatures have shown suppression of the shot noise at particular conductance values. This suppression demonstrates that transport in these structures proceeds via discrete quantum channels. Using a high frequency technique, we simultaneously acquire noise data and conductance histograms in Au junctions at room temperature and ambient conditions. We observe noise suppression at up to three conductance quanta, with possible indications of current-induced local heating and 1/f1/f noise in the contact region at high biases. These measurements demonstrate the quantum character of transport at room temperature at the atomic scale. This technique provides an additional tool for studying dissipation and correlations in nanodevices.Comment: 15 pages, 4 figures + supporting information (6 pages, 6 figures

    Stabilizing single atom contacts by molecular bridge formation

    Get PDF
    Gold-molecule-gold junctions can be formed by carefully breaking a gold wire in a solution containing dithiolated molecules. Surprisingly, there is little understanding on the mechanical details of the bridge formation process and specifically on the role that the dithiol molecules play themselves. We propose that alkanedithiol molecules have already formed bridges between the gold electrodes before the atomic gold-gold junction is broken. This leads to stabilization of the single atomic gold junction, as observed experimentally. Our data can be understood within a simple spring model.Comment: 14 pages, 3 figures, 1 tabl

    Bifurcations in annular electroconvection with an imposed shear

    Full text link
    We report an experimental study of the primary bifurcation in electrically-driven convection in a freely suspended film. A weakly conducting, submicron thick smectic liquid crystal film was supported by concentric circular electrodes. It electroconvected when a sufficiently large voltage VV was applied between its inner and outer edges. The film could sustain rapid flows and yet remain strictly two-dimensional. By rotation of the inner electrode, a circular Couette shear could be independently imposed. The control parameters were a dimensionless number R{\cal R}, analogous to the Rayleigh number, which is V2\propto V^2 and the Reynolds number Re{\cal R}e of the azimuthal shear flow. The geometrical and material properties of the film were characterized by the radius ratio α\alpha, and a Prandtl-like number P{\cal P}. Using measurements of current-voltage characteristics of a large number of films, we examined the onset of electroconvection over a broad range of α\alpha, P{\cal P} and Re{\cal R}e. We compared this data quantitatively to the results of linear stability theory. This could be done with essentially no adjustable parameters. The current-voltage data above onset were then used to infer the amplitude of electroconvection in the weakly nonlinear regime by fitting them to a steady-state amplitude equation of the Landau form. We show how the primary bifurcation can be tuned between supercritical and subcritical by changing α\alpha and Re{\cal R}e.Comment: 17 pages, 12 figures. Submitted to Phys. Rev. E. Minor changes after refereeing. See also http://mobydick.physics.utoronto.c
    corecore