29 research outputs found

    Threshold feedback control for a collective flashing ratchet: threshold dependence

    Full text link
    We study the threshold control protocol for a collective flashing ratchet. In particular, we analyze the dependence of the current on the values of the thresholds. We have found analytical expressions for the small threshold dependence both for the few and for the many particle case. For few particles the current is a decreasing function of the thresholds, thus, the maximum current is reached for zero thresholds. In contrast, for many particles the optimal thresholds have a nonzero finite value. We have numerically checked the relation that allows to obtain the optimal thresholds for an infinite number of particles from the optimal period of the periodic protocol. These optimal thresholds for an infinite number of particles give good results for many particles. In addition, they also give good results for few particles due to the smooth dependence of the current up to these threshold values.Comment: LaTeX, 10 pages, 7 figures, improved version to appear in Phys. Rev.

    Cold atom realizations of Brownian motors

    Full text link
    Brownian motors are devices which "rectify" Brownian motion, i.e. they can generate a current of particles out of unbiased fluctuations. Brownian motors are important for the understanding of molecular motors, and are also promising for the realization of new nanolelectronic devices. Among the different systems that can be used to study Brownian motors, cold atoms in optical lattices are quite an unusual one: there is no thermal bath and both the potential and the fluctuations are determined by laser fields. In this article recent experimental implementations of Brownian motors using cold atoms in optical lattices are reviewed

    Efficiency of Brownian Motors

    Get PDF
    The efficiency of different types of Brownian motors is calculated analytically and numerically. We find that motors based on flashing ratchets present a low efficiency and an unavoidable entropy production. On the other hand, a certain class of motors based on adiabatically changing potentials, named reversible ratchets, exhibit a higher efficiency and the entropy production can be arbitrarily reduced.Comment: LaTeX 209, 6 pages, 7 postscript figures, uses psfi

    Online adaptive planning methods for intensity-modulated radiotherapy

    Get PDF
    Online adaptive radiation therapy aims at adapting a patient's treatment plan to their current anatomy to account for inter-fraction variations before daily treatment delivery. As this process needs to be accomplished while the patient is immobilized on the treatment couch, it requires time-efficient adaptive planning methods to generate a quality daily treatment plan rapidly. The conventional planning methods do not meet the time requirement of online adaptive radiation therapy because they often involve excessive human intervention, significantly prolonging the planning phase. This article reviews the planning strategies employed by current commercial online adaptive radiation therapy systems, research on online adaptive planning, and artificial intelligence's potential application to online adaptive planning.<br/

    Overview: Unsolved problems of noise and fluctuations

    Get PDF
    Noise and fluctuations are at the seat of all physical phenomena. It is well known that, in linear systems, noise plays a destructive role. However, an emerging paradigm for nonlinear systems is that noise can play a constructive role—in some cases information transfer can be optimized at nonzero noise levels. Another use of noise is that its measured characteristics can tell us useful information about the system itself. Problems associated with fluctuations have been studied since 1826 and this Focus Issue brings together a collection of articles that highlight some of the emerging hot unsolved noise problems to point the way for future research

    Bulk and Interfacial Shear Thinning of Immiscible Polymers

    Full text link
    Nonequilibrium molecular dynamics simulations are used to study the shear thinning behavior of immiscible symmetric polymer blends. The phase separated polymers are subjected to a simple shear flow imposed by moving a wall parallel to the fluid-fluid interface. The viscosity begins to shear thin at much lower rates in the bulk than at the interface. The entire shear rate dependence of the interfacial viscosity is consistent with a shorter effective chain length ss^* that also describes the width of the interface. This ss^* is independent of chain length NN and is a function only of the degree of immiscibility of the two polymers. Changes in polymer conformation are studied as a function of position and shear rate.Shear thinning correlates more closely with a decrease in the component of the radius of gyration along the velocity gradient than with elongation along the flow. At the interface, this contraction of chains is independent of NN and consistent with the bulk behavior for chains of length ss^*. The distribution of conformational changes along chains is also studied. Central regions begin to stretch at a shear rate that decreases with increasing NN, while shear induced changes at the ends of chains are independent of NN.Comment: 8 pages, 8 figure

    Disorder Induced Diffusive Transport In Ratchets

    Full text link
    The effects of quenched disorder on the overdamped motion of a driven particle on a periodic, asymmetric potential is studied. While for the unperturbed potential the transport is due to a regular drift, the quenched disorder induces a significant additional chaotic ``diffusive'' motion. The spatio-temporal evolution of the statistical ensemble is well described by a Gaussian distribution, implying a chaotic transport in the presence of quenched disorder.Comment: 10 pages, 4 EPS figures; submitted to Phys. Rev. Letter

    Fluctuation - induced forces in critical fluids

    Full text link
    The current knowledge about fluctuation - induced long - ranged forces is summarized. Reference is made in particular to fluids near critical points, for which some new insight has been obtained recently. Where appropiate, results of analytic theory are compared with computer simulations and experiments.Comment: Topical review, 24 pages RevTeX, 6 figure
    corecore