74 research outputs found

    Comparative Evaluation of Azadirachta indica (Neem) Chip and Soft Tissue Diode Lasers as a Supplement to Phase i Periodontal Therapy in Localized Chronic Moderate Periodontitis: A Randomized Controlled Clinical Trial

    Get PDF
    Introduction. The current trial aimed to assess and compare the efficacy of neem chip and diode laser as a local drug delivery (LDD) agent as a supplement to phase I periodontal therapy in treatment of localized chronic moderate periodontitis. Materials and Methodology. Fourteen systemically healthy participants with 4-6 mm deep periodontal pockets at least in three quadrants (with no alveolar bony defect amenable to respective or regenerative osseous surgery, as seen in orthopantomograph) were selected for the trial. One week after phase I therapy, 10% absorbable chip of neem (commercially prepared by staff of a pharmacy college, Sheriguda, India) was placed in the periodontal pocket on one site, and soft tissue diode laser pocket sterilization was performed on the other site of the arch. Remaining one site was considered as a control. Parameters recorded clinically were plaque index (PI), papillary bleeding index (PBI), probing pocket depth (PPD), and relative attachment level (RAL) measured at baseline, 21st day, and one month postoperatively. Results. Statistically significant improvements were observed in all clinical parameters at one month as compared to baseline for both treatment groups. Conclusion. Neem chip supplemented with phase I therapy showed best improvement in clinical parameters followed by laser supplemented with phase I therapy in comparison to phase I therapy alone at one month follow-up. Clinical Significance. Neem chips are nature's products, affordable without side effects, with a potential to be used as a local drug delivery agent in treating moderate chronic periodontitis

    Antimicrobial protein and Peptide concentrations and activity in human breast milk consumed by preterm infants at risk of late-onset neonatal sepsis

    Get PDF
    Objective: We investigated the levels and antimicrobial activity of antimicrobial proteins and peptides (AMPs) in breast milk consumed by preterm infants, and whether deficiencies of these factors were associated with late-onset neonatal sepsis (LOS), a bacterial infection that frequently occurs in preterm infants in the neonatal period. Study design: Breast milk from mothers of preterm infants (≤32 weeks gestation) was collected on days 7 (n = 88) and 21 (n = 77) postpartum. Concentrations of lactoferrin, LL-37, beta-defensins 1 and 2, and alpha-defensin 5 were measured by enzyme-linked immunosorbent assay. The antimicrobial activity of breast milk samples against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae was compared to the activity of infant formula, alone or supplemented with physiological levels of AMPs. Samples of breast milk fed to infants with and without subsequent LOS were compared for levels of AMPs and inhibition of bacterial growth. Results: Levels of most AMPs and antibacterial activity in preterm breast milk were higher at day 7 than at day 21. Lactoferrin was the only AMP that limited pathogen growth >50% when added to formula at a concentration equivalent to that present in breast milk. Levels of AMPs were similar in the breast milk fed to infants with and without LOS, however, infants who developed LOS consumed significantly less breast milk and lower doses of milk AMPs than those who were free from LOS. Conclusions: The concentrations of lactoferrin and defensins in preterm breast milk have antimicrobial activity against common neonatal pathogens

    EM Scattering from the Edge of a Semi-Infinite Planar Strip Grating Using Approximate Boundary Conditions

    No full text
    Electromagnetic scattering by the edge of a semi-infinite, dense planar grating of free-standing metallic strips is analyzed. The grating is illuminated by an arbitrarily polarized plane wave impinging on its edge at oblique incidence. The strips can be arbitrarily oriented with respect to the edge. An equivalent canonical problem is defined by adopting for the strip grating well-known approximate boundary conditions derived in the framework of homogenization techniques. The exact spectral solution for the above canonical problem is deduced by the application of the Sommerfeld-Maliuzhinets method, and explicitly depends on the grating parameters. The spectral solution is defined along the Sommerfeld integration contour and can be evaluated asymptotically to derive high-frequency expressions for the diffracted field. Some numerical results are presented to show that the above solution predicts a non vanishing diffracted field for any incident field polarization, and smoothly converges to the known solutions for both the perfectly conducting half-plane and the unidirectionally conducting half-plane, which are contained in the adopted strip-grating model as limit cases

    Electromagnetic Scattering by Anisotropic Impedance Half and Full Planes Illuminated at Oblique Incidence

    No full text
    The three-dimensional electromagnetic (EM) scattering from half and full plane configurations, both characterized by a perfectly conducting and an anisotropic impedance face, is analyzed. The anisotropic impedance boundary condition considered for the loaded face is suitable for modeling corrugated surfaces or strip-loaded grounded dielectric slabs used to realize artificially hard or soft surfaces, with a tensor surface impedance exhibiting a vanishing impedance along the corrugations or strips and a diverging impedance in the orthogonal direction. Previous rigorous solutions, valid when the vanishing impedance direction is either parallel or perpendicular to the edge, are generalized here to the case in which the direction of vanishing impedance is arbitrarily oriente
    • …
    corecore