1,373 research outputs found

    Investigation of the bandwidth of multimode optical fibers used with 1550-nm LED and laser sources

    Get PDF
    Multimode optical fibers are not intended to be used with 1550-nm sources; however, it is desirable to utilize 1300/1550-nm wavelength division multiplexing (WDM) on some multimode fibers at Kennedy Space Center (KSC). No information from fiber vendors nor from the literature is available to support this use. Preliminary studies at KSC have suggested that these fibers might be usable at 1550-nm if the fibers possessed enough bandwidth when sourced by LEDs. Detailed bandwidth studies were made on 12 multimode fibers using 1300- and 1550-nm lasers and LEDs. The results showed that the modal bandwidth at 1550-nm was about 50 percent of the 1300-nm value and that the chromatic dispersion could be predicted by extrapolating the vendor's specifications for wavelengths outside the 1550-nm region. Utilizing these data, predictions of the fiber's optical bandwidth were accurately made. Problems with launch conditions and possible differential attenuation at connectors was noted at 1300-nm but was less significant at 1550-nm. It appears that the multimode fibers studied will offer adequate performance in the 1550-nm region for a number of current KSC needs. Studies of additional fibers are encouraged to gain more confidence and better understanding of the 1550-nm bandwidth of KSC's multimode optical fibers before committing to 1300/1550-nm WDM

    Feasibility study of transmission of OTV camera control information in the video vertical blanking interval

    Get PDF
    The Operational Television system at Kennedy Space Center operates hundreds of video cameras, many remotely controllable, in support of the operations at the center. This study was undertaken to determine if commercial NABTS (North American Basic Teletext System) teletext transmission in the vertical blanking interval of the genlock signals distributed to the cameras could be used to send remote control commands to the cameras and the associated pan and tilt platforms. Wavelength division multiplexed fiberoptic links are being installed in the OTV system to obtain RS-250 short-haul quality. It was demonstrated that the NABTS transmission could be sent over the fiberoptic cable plant without excessive video quality degradation and that video cameras could be controlled using NABTS transmissions over multimode fiberoptic paths as long as 1.2 km

    Time-Dependence of the Mass Accretion Rate in Cluster Cooling Flows

    Get PDF
    We analyze two time-dependent cluster cooling flow models in spherical symmetry. The first assumes that the intracluster gas resides in a static external potential, and includes the effects of optically thin radiative cooling and mass deposition. This corresponds to previous steady-state cooling flow models calculated by White & Sarazin (1987). Detailed agreement is found between steady-state models and time-dependent models at fixed times in the simulations. The mass accretion rate is found either to increase or remain nearly constant once flows reach a steady state. The time rate of change of the accretion rate is strongly sensitive to the value of the mass deposition parameter q, but only mildly sensitive to the ratio beta of gravitational binding energy to gas temperature. We show that previous scaling arguments presented by Bertschinger (1988) and White (1988) are valid only for mature cooling flows with weak mass deposition (q ~< 1). The second set of models includes the effects of a secularly deepening cluster potential and secondary infall of gas from the Hubble flow. We find that such heating effects do not prevent the flows from reaching a steady state within an initial central cooling time.Comment: 22 pages (AASTeX) with 16 EPS figures; accepted for publication in The Astrophysical Journa

    Liquid droplet radiator program at the NASA Lewis Research Center

    Get PDF
    The NASA Lewis Research Center and the Air Force Rocket Propulsion Laboratory (AFRPL) are jointly engaged in a program for technical assessment of the Liquid Droplet Radiator (LDR) concept as an advanced high performance heat ejection component for future space missions. NASA Lewis has responsibility for the technology needed for the droplet generator, for working fluid qualification, and for investigating the physics of droplets in space; NASA Lewis is also conducting systems/mission analyses for potential LDR applications with candidate space power systems. For the droplet generator technology task, both micro-orifice fabrication techniques and droplet stream formation processes have been experimentally investigated. High quality micro-orifices (to 50 micron diameter) are routinely fabricated with automated equipment. Droplet formation studies have established operating boundaries for the generation of controlled and uniform droplet streams. A test rig is currently being installed for the experimental verification, under simulated space conditions, of droplet radiation heat transfer performance analyses and the determination of the effect radiative emissivity of multiple droplet streams. Initial testing has begun in the NASA Lewis Zero-Gravity Facility for investigating droplet stream behavior in microgravity conditions. This includes the effect of orifice wetting on jet dynamics and droplet formation. Results for both Brayton and Stirling power cycles have identified favorable mass and size comparisons of the LDR with conventional radiator concepts

    The Racket-Control Laws Of Virginia: A Review

    Full text link

    Chandra Analysis of Abell 496 - No Chemical Gradients Across Cold Fronts

    Full text link
    We present the results of a spatially-resolved spectroscopic analysis of the galaxy cluster Abell 496 with the S3 chip on-board the Chandra satellite. We confirm the presence of a central positive temperature gradient consistent with a cooling flow, but with a minimum gas temperature of ~0.5-0.9 keV. The cluster also exhibits sharp edges in gas density and temperature which are consistent with "cold front" substructures. The iron abundance profile is not radially symmetric relative to the cluster center. Towards the direction of the most prominent (northerly) cold front, the iron abundance is roughly flat, with nearly solar values. In the opposite (southerly) direction from the center, the iron abundance distribution shows an "off-center" peak. Various abundance ratios suggest that the heavy elements in the central regions of the cluster are dominated by SN Ia ejecta. However, for radii greater than 100 kpc, the abundance ratios vary in such a way that different abundance ratios provide very different estimates of the proportion of SN Ia/II ejecta. Nonetheless, observed abundances and abundance ratios are continuous across the cold fronts, which suggests that the cold fronts are not likely to be the result of a subcluster merger. We suggest instead that the cold fronts in A496 are caused by "sloshing" of the central cooling flow gas, induced by the motion of the cD about the cluster center.Comment: 14 pages, 5 figures, Accepted for publication in the Astrophysical Journal Letters. Higher resolution figures available at http://www.astro.lsa.umich.edu/~rdupke/coldfrnt.tar.g

    Energetic Materials at High Compression: First-Principles Density Functional Theory and Reactive Force Field Studies

    Get PDF
    We report the results of a comparative study of pentaerythritol tetranitrate (PETN) at high compression using classical reactive interatomic potential ReaxFF and first-principles density functional theory (DFT). Lattice parameters of PETN I, the ground state structure at ambient conditions, is obtained by ReaxFF and two different density functional methods (plane wave and LCAO pseudopotential methods) and compared with experiment. Calculated energetics and isothermal equation of state (EOS) upon hydrostatic compression obtained by DFT and ReaxFF are both in good agreement with available experimental data. Our calculations of the hydrostatic EOS at zero temperature are extended to high pressures up to 50 GPa. The anisotropic characteristics of PETN upon uniaxial compression were also calculated by both ReaxFF and DFT
    corecore