1,084 research outputs found

    Arbitrary beam control using passive lossless metasurfaces enabled by orthogonally-polarized custom surface waves

    Full text link
    For passive, lossless impenetrable metasurfaces, a design technique for arbitrary beam control of receiving, guiding, and launching is presented. Arbitrary control is enabled by a custom surface wave in an orthogonal polarization such that its addition to the incident (input) and the desired scattered (output) fields is supported by a reactive surface impedance everywhere on the reflecting surface. Such a custom surface wave (SW) takes the form of an evanescent wave propagating along the surface with a spatially varying envelope. A growing SW appears when an illuminating beam is received. The SW amplitude stays constant when power is guided along the surface. The amplitude diminishes as a propagating wave (PW) is launched from the surface as a leaky wave. The resulting reactive tensor impedance profile may be realized as an array of anisotropic metallic resonators printed on a grounded dielectric substrate. Illustrative design examples of a Gaussian beam translator-reflector, a probe-fed beam launcher, and a near-field focusing lens are provided

    Circularly Polarized Receiving Antenna Incorporating Two Helices to Achieve Low Backscattering

    Full text link
    We propose to use an antenna composed of two orthogonal helices as a low-scattering sensor. The vector effective length is derived for the antenna using the small dipole approximation for the helices. The antenna can transmit and receive circular polarization in all directions with the Huygens' pattern. We observe that the antenna geometry does not backscatter, regardless of the polarization, when the incidence direction is normal to the plane of the helices. Scattered fields, scattered axial ratio, and the scattering cross section are presented. We show that the zero-backscattering property holds also for the antenna when it is capable to receive all the available power with conjugate loading. The approximate analytical model is validated with full-wave simulations.Comment: 14 pages, 7 figures. Submitted to IEEE Trans. Antennas Propa

    Isotropic Chiral Objects With Zero Backscattering

    Full text link
    In this paper we study electrically small chiral objects with isotropic response and zero backscattering. A bi-isotropic sphere is used as a simple example and its zero-backscattering conditions are studied. A theoretical model of an object composed of three orthogonal chiral particles made of conducting wire is presented as an analog of the zero-backscattering bi-isotropic sphere. A potential application of the object as a receiving antenna or a sensor with the ability to receive power from an arbitrary direction without backscattering is discussed.Comment: 8 pages, 1 figure, submitted to IEEE Trans. Antennas Propa

    Backward-wave regime and negative refraction in chiral composites

    Full text link
    Possibilities to realize a negative refraction in chiral composites in in dual-phase mixtures of chiral and dipole particles is studied. It is shown that because of strong resonant interaction between chiral particles (helixes) and dipoles, there is a stop band in the frequency area where the backward-wave regime is expected. The negative refraction can occur near the resonant frequency of chiral particles. Resonant chiral composites may offer a root to realization of negative-refraction effect and superlenses in the optical region

    Near-field enhancement and sub-wavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres

    Get PDF
    Near-field enhancement and sub-wavelength imaging properties of a system comprising a coupled pair of two-dimensional arrays of resonant nanospheres are studied. The concept of using two coupled material sheets possessing surface mode resonances for evanescent field enhancement is already well established in the microwave region. This paper shows that the same principles can be applied also in the optical region, where the performance of the resonant sheets can be realized with the use of metallic nanoparticles. In this paper we present design of such structures and study the electric field distributions in the image plane of such superlens.Comment: 15 pages, 9 figure

    Effective electric and magnetic properties of metasurfaces in transition from crystalline to amorphous state

    Full text link
    In this paper we theoretically study electromagnetic reflection, transmission, and scattering properties of periodic and random arrays of particles which exhibit both electric-mode and magnetic-mode resonances. We compare the properties of regular and random grids and explain recently observed dramatic differences in resonance broadening in the electric and magnetic modes of random arrays. We show that randomness in the particle positioning influences equally on the scattering loss from both electric and magnetic dipoles, however, the observed resonance broadening can be very different depending on the absorption level in different modes as well as on the average electrical distance between the particles. The theory is illustrated by an example of a planar metasurface composed of cut-wire pairs. We show that in this particular case at the magnetic resonance the array response is almost not affected by positioning randomness due to lower frequency and higher absorption losses in that mode. The developed model allows predictions of behavior of random grids based on the knowledge of polarizabilities of single inclusions.Comment: 13 pages, 5 figures, and submitted to PR
    • …
    corecore