16 research outputs found

    Relation between flame chemiionization and variable-volume combustion chamber temperature and pressure

    No full text
    The article presents the results of investigating the relation between flame chemiionization and the flame temperature and pressure in a variable- volume combustion chamber. Functional dependences of flame temperature and maximum pressure on the electron current caused by flame chemiionization, fundamental characteristics of flame propagation and combustion efficiency are presented. Comparison of the temperature calculated by the proposed method with experimental data shows that with the excess air factor of 0.8 to 1.15, the precision is more than 85%. Comparison of the maximum pressure obtained experimentally and calculated by the refined Vibe model, using the proposed formulas, showed good agreement. The results of the work can be used to predict and monitor maximum flame temperature and pressure in the combustion chamber of an internal combustion engine and other power plants using an ionization probe

    IMPROVING THE SYSTEM OF RAW MATERIAL SUPPLY OF THE MEAT INDUSTRY

    No full text
    The article describes the characteristics of the process of improving the system raw materials supply of meat industry and presents the main factors, criteria, principles and algorithm rational distribution of the meat industry. The relevance of the research topic, in a globalized economy and Russia's accession to the WTO, caused by necessity to improve the system of raw material supply domestic enterprises and enhancing food security

    Numerical investigation of spallation neutrons generated from petawatt-scale laserdriven proton beams

    No full text
    International audienceLaser-driven neutron sources could offer a promising alternative to those based on conventional accelerator technologies in delivering compact beams of high brightness and short duration. We examine this through particle-in-cell and Monte Carlo simulations, that model, respectively, the laser acceleration of protons from thin-foil targets and their subsequent conversion into neutrons in secondary lead targets. Laser parameters relevant to the 0.5 petawatt (PW) LMJ-PETAL and 0.6-6 PW Apollon systems are considered. Due to its high intensity, the 20-fs-duration 0.6 PW Apollon laser is expected to accelerate protons up to above 100 MeV, thereby unlocking efficient neutron generation via spallation reactions. As a result, despite a 30-fold lower pulse energy than the LMJ-PETAL laser, the 0.6 PW Apollon laser should perform comparably well both in terms of neutron yield and flux. Notably, we predict that very compact neutron sources, of ~ 10 ps duration and ~ 100 Āµm spot size, can be released provided the lead convertor target is thin enough (~ 100 Āµm). These sources are characterized by extreme fluxes, of the order of 10 23 n cm-2 s-1 , and even ten times higher when using the 6 PW Apollon laser. Such values surpass those currently achievable at large-scale accelerator-based neutron sources (~ 10 16 n cm-2 s-1), or reported from previous laser experiments using low-Z converters (~ 10 18 n cm-2 s-1). By showing that such laser systems can produce neutron pulses significantly brighter than existing sources, our findings open a path towards attractive novel applications, such as flash neutron radiography or laboratory studies of heavy-ion nucleosynthesis

    Path Planning in Threat Environment for UUV with Non-Uniform Radiation Pattern

    No full text
    The problem of optimal trajectory planning of the unmanned underwater vehicle (UUV) is considered and analytically solved. The task is to minimize the risk of detection of the moving object by a static sonar while moving between two given points on a plane. The detection is based on the primary acoustic field radiated by the object with a non-uniform radiation pattern. In the first part of the article, the probability of non-detection is derived. Further, it is used as an optimization criterion. The non-uniform radiation pattern of the object differentiates this work from previous research in the area. The optimal trajectory and velocity law of the moving object are found, as well as the criterion value on it
    corecore