20 research outputs found

    Global solvability and blow up for the convective Cahn-Hilliard equations with concave potentials

    Get PDF
    We study initial boundary value problems for the convective Cahn-Hilliard equation \Dt u +\px^4u +u\px u+\px^2(|u|^pu)=0. It is well-known that without the convective term, the solutions of this equation may blow up in finite time for any p>0p>0. In contrast to that, we show that the presence of the convective term u\px u in the Cahn-Hilliard equation prevents blow up at least for 0<p<490<p<\frac49. We also show that the blowing up solutions still exist if pp is large enough (p2p\ge2). The related equations like Kolmogorov-Sivashinsky-Spiegel equation, sixth order convective Cahn-Hilliard equation, are also considered

    Mathematical analysis of a model of river channel formation.

    Get PDF
    The study of overland flow of water over an erodible sediment leads to a coupled model describing the evolution of the topographic elevation and the depth of the overland water film. The spatially uniform solution of this model is unstable, and this instability corresponds to the formation of rills, which in reality then grow and coalesce to form large-scale river channels. In this paper we consider the deduction and mathematical analysis of a deterministic model describing river channel formation and the evolution of its depth. The model involves a degenerate nonlinear parabolic equation (satisfied on the interior of the support of the solution) with a super-linear source term and a prescribed constant mass. We propose here a global formulation of the problem (formulated in the whole space, beyond the support of the solution) which allows us to show the existence of a solution and leads to a suitable numerical scheme for its approximation. A particular novelty of the model is that the evolving channel self-determines its own width, without the need to pose any extra conditions at the channel margin

    Méthodes aux Différences pour Équations Elliptiques

    No full text
    304 tr. ; 21 cm

    Méthodes aux différences pour équations elliptiques

    No full text
    corecore