11,732 research outputs found
Response to Wirostko et al. Re: "Cross-Linked Hyaluronic Acid as Tear Film Substitute" by Posarelli et al. (J Ocul Pharmacol Ther 2019;35(7):381-387)
Response to Wirostko et al. Re: “Cross-Linked Hyaluronic Acid as Tear Film Substitute” by Posarelli et al. (J Ocul Pharmacol Ther 2019;35(7):381–387)." Journal of Ocular Pharmacology and Therapeutics, 36(4), pp. 206–20
Thermodynamic Stability at the Two-Particle Level
We show how the stability conditions for a system of interacting fermions
that conventionally involve variations of thermodynamic potentials can be
rewritten in terms of local one- and two-particle correlators. We illustrate
the applicability of this alternative formulation in a multi-orbital model of
strongly correlated electrons at finite temperatures, inspecting the lowest
eigenvalues of the generalized local charge susceptibility in proximity of the
phase-separation region. Additionally to the conventional unstable branches, we
address unstable solutions possessing a positive, rather than negative
compressibility. Our stability conditions require no derivative of free energy
functions with conceptual and practical advantages for actual calculations and
offer a clear-cut criterion for analyzing the thermodynamics of correlated
complex systems.Comment: 7 (+6) pages, 4 figure
Non cross-linked equine collagen (Salvecoll-E gel) for treatment of complex ano-rectal fistula
Summary: Background: Fistula-in-ano is one of the most commonly presenting anorectal diseases. Sphincter sparing treatment options should be considered in patients with complex fistulas. Salvecoll-E gel is a native collagen deantigenated and purified, non-cross-linked equine dermal extract, with an amino acid composition identical to human collagen. Methods: The multicentric trial study was a prospective, single-arm observational clinical study with the objective to assess the efficacy of Salvecoll-E gel for anal fistula repair in 70 patients. All patients had undergone preliminary surgical treatment consisting of positioning of a draining loosing seton that was maintained for a period of 4–6 weeks. After seton removal, a gentle debridement and washing of the fistula track was performed. The scar tissue was removed from the internal orifice. Internal opening was covered by a side-to side mucosal suture. Salvecoll-E was injected through the external opening into the fistula track, the external opening it has been opened. Results: Twelve months after surgery, 55 patients demonstrated a clinically healed fistula (78,5%), 15 patients have a recurrence (21,5%). Most of the recurrences were observed in the first 6 months of treatment (13/15, 86.6%). We don't observe any worsening in CCF score. The results obtained at 1 year certainly seem satisfactory and in line with the best results published in literature using mini-invasive techniques. Conclusion: Salvecoll-E gel is a promising non-invasive technique for conservative treatment of anal fistulas, it's well tolerated by the patients and, in case of recurrence, reinjection or all other known techniques are feasible. Keywords: Complex ano-rectal fistula, Non cutting technique, Mini-invasive treatmen
Response of microchannel plates in ionization mode to single particles and electromagnetic showers
Hundreds of concurrent collisions per bunch crossing are expected at future
hadron colliders. Precision timing calorimetry has been advocated as a way to
mitigate the pileup effects and, thanks to their excellent time resolution,
microchannel plates (MCPs) are good candidate detectors for this goal. We
report on the response of MCPs, used as secondary emission detectors, to single
relativistic particles and to electromagnetic showers. Several prototypes, with
different geometries and characteristics, were exposed to particle beams at the
INFN-LNF Beam Test Facility and at CERN. Their time resolution and efficiency
are measured for single particles and as a function of the multiplicity of
particles. Efficiencies between 50% and 90% to single relativistic particles
are reached, and up to 100% in presence of a large number of particles. Time
resolutions between 20ps and 30ps are obtained.Comment: 20 pages, 9 figures. Paper submitted to NIM
Integrating Liquid Biopsy and Radiomics to Monitor Clonal Heterogeneity of EGFR-Positive Non-Small Cell Lung Cancer
Background: EGFR-positive Non-small Cell Lung Cancer (NSCLC) is a dynamic entity and tumor progression and resistance to tyrosine kinase inhibitors (TKIs) arise from the accumulation, over time and across different disease sites, of subclonal genetic mutations. For instance, the occurrence of EGFR T790M is associated with resistance to gefitinib, erlotinib, and afatinib, while EGFR C797S causes osimertinib to lose activity. Sensitive technologies as radiomics and liquid biopsy have great potential to monitor tumor heterogeneity since they are both minimally invasive, easy to perform, and can be repeated over patient’s follow-up, enabling the extraction of valuable information. Yet, to date, there are no reported cases associating liquid biopsy and radiomics during treatment. Case presentation: In this case series, seven patients with metastatic EGFR-positive NSCLC have been monitored during target therapy. Plasma-derived cell free DNA (cfDNA) was analyzed by a digital droplet PCR (ddPCR), while radiomic analyses were performed using the validated LifeX® software on computed tomography (CT)-images. The dynamics of EGFR mutations in cfDNA was compared with that of radiomic features. Then, for each EGFR mutation, a radiomic signature was defines as the sum of the most predictive features, weighted by their corresponding regression coefficients for the least absolute shrinkage and selection operator (LASSO) model. The receiver operating characteristic (ROC) curves were computed to estimate their diagnostic performance. The signatures achieved promising performance on predicting the presence of EGFR mutations (R2 = 0.447, p <0.001 EGFR activating mutations R2 = 0.301, p = 0.003 for T790M; and R2 = 0.354, p = 0.001 for activating plus resistance mutations), confirmed by ROC analysis. Conclusion: To our knowledge, these are the first cases to highlight a potentially promising strategy to detect clonal heterogeneity and ultimately identify patients at risk of progression during treatment. Together, radiomics and liquid biopsy could detect the appearance of new mutations and therefore suggest new therapeutic management
ErbB in NSCLC as a molecular target: Current evidences and future directions
A number of treatments have been developed for HER1, 2 and 3-driven non-small cell lung cancer (NSCLC), of which the most successful have been the epidermal growth factor receptor-tyrosine kinase inhibitors in HER1-mutant tumours resulting in highly improved progression-free survival. Human epidermal growth factor (HER)2 and 3-driven tumours represent the minority of NSCLC, and effective therapies in these patients still represent an unmet medical need. The encouraging results seen with anti-HER2 and anti-HER3 monoclonal antibodies need to be validated in larger studies, even if the greatest obstacle is represented by the exiguous number of patients bearing deregulated HER2/3 system and abnormalities of signal transduction pathway. Considering NSCLC tumour heterogeneity, which affects response and resistance to treatment, combined multiparametric approaches, such as liquid biopsy together with radiomics, may provide a better understanding of the tumour dynamics and clonal selection during the treatments
- …