418 research outputs found

    Domain walls in supersymmetric QCD: from weak to strong coupling

    Get PDF
    We consider domain walls that appear in supersymmetric QCD with Nf < Nc massive flavours. In particular, for 2 Nf < Nc we explicitly construct the domain walls that interpolate between vacua labeled by i and (i+ N_f). We show that these solutions are Bogomol'nyi-Prasad-Sommerfield (BPS) saturated for any value of the mass of the matter fields. This fact allows us to evaluate the large mass limit of these domain walls. We comment on the relevance of these solutions for supersymmetric gluodynamics.Comment: 4 pages, 4 figures, LaTex, uses psfig.st

    On domain shapes and processes in supersymmetric theories

    Get PDF
    A supersymmetric theory with several scalar superfields generically has several domain wall type classical configurations which interpolate between various supersymmetric vacua of the scalar fields. Depending on the couplings, some of these configurations develop instability and decay into multiple domain walls, others can form intersections in space. These phenomena are considered here in a simplest, yet non-trivial, model with two scalar superfields.Comment: 10 pages, LaTeX, 5 figures in LaTe

    N=2 Sigma Model with Twisted Mass and Superpotential: Central Charges and Solitons

    Full text link
    We consider supersymmetric sigma models on the Kahler target spaces, with twisted mass. The Kahler spaces are assumed to have holomorphic Killing vectors. Introduction of a superpotential of a special type is known to be consistent with N=2 superalgebra (Alvarez-Gaume and Freedman). We show that the algebra acquires central charges in the anticommutators {Q_L, Q_L} and {Q_R, Q_R}. These central charges have no parallels, and they can exist only in two dimensions. The central extension of the N=2 superalgebra we found paves the way to a novel phenomenon -- spontaneous breaking of a part of supersymmetry. In the general case 1/2 of supersymmetry is spontaneously broken (the vacuum energy density is positive), while the remaining 1/2 is realized linearly. In the model at hand the standard fermion number is not defined, so that the Witten index as well as the Cecotti-Fendley-Intriligator-Vafa index are useless. We show how to construct an index for counting short multiplets in internal algebraic terms which is well-defined in spite of the absence of the standard fermion number. Finally, we outline derivation of the quantum anomaly in {\bar Q_L, Q_R}.Comment: 21 pages, Latex, 1 eps figure. Two important references adde

    Functional Approach to Stochastic Inflation

    Full text link
    We propose functional approach to the stochastic inflationary universe dynamics. It is based on path integral representation of the solution to the differential equation for the scalar field probability distribution. In the saddle-point approximation scalar field probability distributions of various type are derived and the statistics of the inflationary-history-dependent functionals is developed.Comment: 20 pages, Preprint BROWN-HET-960, uses phyzz

    BPS Saturated Vacua Interpolation along One Compact Dimension

    Get PDF
    A class of generalized Wess-Zumino models with distinct vacua is investigated. These models allow for BPS saturated vacua interpolation along one compact spatial dimension. The properties of these interpolations are studied.Comment: 8 pages, 4 figure

    Exact Results in Gauge Theories: Putting Supersymmetry to Work. The 1999 Sakurai Prize Lecture

    Full text link
    Powerful methods based on supersymmetry allow one to find exact solutions to certain problems in strong coupling gauge theories. The inception of some of these methods (holomorphy in the gauge coupling and other chiral parameters, in conjunction with instanton calculations) dates back to the 1980's. I describe the early exact results -- the calculation of the beta function and the gluino condensate -- and their impact on the subsequent developments. A brief discussion of the recent breakthrough discoveries where these results play a role is given.Comment: Based on the talk at the Centennial Meeting of The American Physical Society, March 20-26, Atlanta, GA. LaTex (uses sprocl.sty), 36 pages, 5 eps figures include

    Domain Walls and Decay Rate of the Excited Vacua in the Large N Yang-Mills Theory

    Get PDF
    In the (non-supersymmetric) Yang-Mills theory in the large N limit there exists an infinite set of non-degenerate vacua. The distinct vacua are separated by domain walls whose tension determines the decay rate of the false vacua. I discuss the phenomenon from a field-theoretic point of view, starting from supersymmetric gluodynamics and then breaking supersymmetry, by introducing a gluino mass. By combining previously known results, the decay rate of the excited vacua is estimated, \Gamma \sim \exp (-const \times N^4). The fourth power of N in the exponent is a consequence of the fact that the wall tension is proportional to N.Comment: Plain Latex, 6 pages, no figure
    corecore