35 research outputs found

    Impact of optimal therapy for noncommunicable diseases on the course and outcome of COVID-19 inpatients

    Get PDF
    Aim. To carry out a comparative analysis of the impact of optimal and suboptimal therapy for noncommunicable diseases (NCDs) at the prehospital stage on the severity and outcomes of coronavirus disease 2019 (COVID-19).Material and methods. The study included 158 patients hospitalized with a diagnosis of COVID-19 and having one or more concomitant NCDs. Patients were divided into two groups depending on the quality of initial therapy for NCDs: group 1 β€” patients receiving treatment that does not meet modern clinical guidelines, taking drugs not regularly or not taking them at all (n=100; 63%), and group 2 β€” patients receiving treatment in accordance with current clinical guidelines, taking regularly prescribed therapy (n=58; 37%). The primary endpoint was inhospital death, while secondary endpoints β€” duration of fever, length of intensive care unit (ICU) stay, length of hospital stay.Results. Inhospital mortality was significantly higher in the 1st group of patients compared with the 2nd group (18,0% vs 1,7%, p=0,002). Analysis of secondary endpoints revealed that patients of the 1st group (nonoptimal therapy), in comparison with the 2nd group (optimal therapy), had significantly longer period of fever (10 [7; 12] vs 9 [7; 10] days, p=0,03), longer ICU (0 [0; 3] vs 0 [0; 0] days, p<0,001) and hospital stay (10 [8; 14] vs 8 [7; 11] days, p=0,001).Conclusion. Patients who received standard NCD therapy before admission to the infectious disease hospital, in accordance with current clinical guidelines and who regularly take drugs, have a more favorable course of COVID-19 at the hospital stage and a lower inhospital mortality rate than patients with suboptimal therapy who are not adherent to treatment or not receiving drugs, but having indications for taking them

    Π‘Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΉ состав ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ эритроцитов ΠΏΡ€ΠΈ трансплантации ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ ΠΏΠΎΡ‡ΠΊΠΈ

    Get PDF
    Organ transplantation is an effective treatment for many end-stage diseases. However, reperfusion injury constitutes a major complication of transplantation, which is associated with microcirculatory disorders and aggregation of blood corpuscles. Red blood cells (RBC) play an essential role in maintaining hemodynamic and rheological properties of the blood. Moreover, the study of mechanisms of changes in RBC functional indices is an urgent task. The main indicator of RBC functioning is the stability of RBC membrane structure. The issue of RBC membrane modification in organ transplantation has not been studied so far. Objective: to study the protein composition of RBC membranes, their aggregation and electrokinetic parameters in liver and kidney recipients, as well as in related kidney and liver fragment donors before and after operation. Research materials. Blood of 12 kidney recipients and 5 related kidney donors, 8 liver recipients and 4 related liver fragment donors – 1–2 hours before surgery, 1 week, 1, 2, 7, 10, 12 months after surgery. The control group consisted of 8 healthy volunteers. Research methods. Protein separation was done by Laemmli electrophoresis. RBC electrophoretic mobility, which characterizes the electrokinetic properties of cells, was measured by microelectrophoresis. Aggregation was calculated microscopically by counting unaggregated RBCs. Obtained values were compared by Mann-Whitney U test. Results. Examination of the RBC membrane of kidney recipients revealed a significant decrease in the amount of Band 3 protein and glycophorin before and after transplantation. Band 3 protein levels reduced at 1 month, glycophorin reduced at 7 months after surgery, with a maximum decrease in these protein fractions by more than 50% by 7 days compared with control values. There was also a decrease in spectrin content for 2 months after surgery with a maximum decrease of 30% by 1 month. In liver recipients, analysis of RBC membrane proteins revealed a decrease in the amount of glycophorin before surgery and further decrease at 2 months of post-transplant period. The maximum decrease in this index was 72% by 7 days after surgery. In addition, there was a fall in spectrin and Band 3 protein levels at 1 month by more than 60% relative to the control values. In donors, there were changes in the protein fraction of RBC membranes in the long-term post-operative period: spectrin and Band 3 protein levels reduced by 2 times at month 2 in kidney donors, while glycophorin levels reduced by 2.3 times at month 1 after operation in liver donors. Similarly, both groups of donors had increased actin levels at month 1 after surgery. The revealed changes in protein levels in the protein phase of RBC membranes were combined with functional indices of RBCs. In kidney recipients, decreased RBC electrophoretic mobility and increased aggregation were detected at 2 months. In liver recipients, the changes in these indicators were at 1 month. A decrease in RBC electrophoretic mobility was detected in donors of both groups. Conclusion. Changes in RBC membrane electronegativity are associated with changes in glycophorin and Band 3 protein levels, whereas in RBC aggregation process in liver/kidney recipients, the structural and functional disorders in the interrelationships of such membrane proteins as spectrin, Band 3 protein, and glycophorin, are significant factors. Alteration of actin determines inhibition of RBC aggregation growth in donors.Врансплантация ΠΎΡ€Π³Π°Π½ΠΎΠ² являСтся эффСктивным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ лСчСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ стадиями ряда тяТСлых Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Однако ΡΠ΅Ρ€ΡŒΠ΅Π·Π½Ρ‹ΠΌ ослоТнСниСм ΠΏΡ€ΠΈ трансплантации ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ€Π΅ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½Ρ‹Π΅ поврСТдСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ связаны с микроциркуляторными Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ ΠΈ Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠ΅ΠΉ Ρ„ΠΎΡ€ΠΌΠ΅Π½Π½Ρ‹Ρ… элСмСнтов ΠΊΡ€ΠΎΠ²ΠΈ. Π­Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΈΠ³Ρ€Π°ΡŽΡ‚ ΡΡƒΡ‰Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠΈ гСмодинамичСских ΠΈ рСологичСских свойств ΠΊΡ€ΠΎΠ²ΠΈ, ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² измСнСния ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ функционирования эритроцита слуТит ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ структуры ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹. Вопрос ΠΎ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ эритроцитарной ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ ΠΏΡ€ΠΈ трансплантации ΠΎΡ€Π³Π°Π½ΠΎΠ² Π½Π° сСгодняшний дСнь Π½Π΅ исслСдован.ЦСль: ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ состава ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ эритроцитов, ΠΈΡ… Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈ элСктрокинСтичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρƒ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ ΠΏΠΎΡ‡ΠΊΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ родствСнных Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΏΠΎΡ‡ΠΊΠΈ ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° ΠΏΠ΅Ρ‡Π΅Π½ΠΈ Π΄ΠΎ ΠΈ Π² Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ послСопСрационного ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ исслСдования. ΠšΡ€ΠΎΠ²ΡŒ 12 Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎΡ‡ΠΊΠΈ, 5 родствСнных Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΏΠΎΡ‡ΠΊΠΈ, 8 Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ 4 родствСнных Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° ΠΏΠ΅Ρ‡Π΅Π½ΠΈ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ – Π·Π° 1–2 часа Π΄ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, Ρ‡Π΅Ρ€Π΅Π· 1 нСдСлю, 1, 2, 7, 10, 12 мСсяцСв послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Π“Ρ€ΡƒΠΏΠΏΡƒ контроля составили 8 Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π΄ΠΎΠ±Ρ€ΠΎΠ²ΠΎΠ»ΡŒΡ†Π΅Π².ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования. Π Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ² ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктрофорСза ΠΏΠΎ Лэммли. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ эритроцитов, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΡƒΡŽ элСктрокинСтичСскиС свойства ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, измСряли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ микроэлСктрофорСза. ΠΠ³Ρ€Π΅Π³Π°Ρ†ΠΈΡŽ рассчитывали микроскопичСски, ΠΏΡƒΡ‚Π΅ΠΌ подсчСта Π½Π΅Π°Π³Ρ€Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… эритроцитов. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠΎ U-ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡŽ ΠœΠ°Π½Π½Π°β€“Π£ΠΈΡ‚Π½ΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ИсслСдованиС ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ эритроцитов ΠΊΡ€ΠΎΠ²ΠΈ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎΡ‡ΠΊΠΈ выявило Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ сниТСниС количСства Π±Π΅Π»ΠΊΠ° полосы 3 ΠΈ Π³Π»ΠΈΠΊΠΎΡ„ΠΎΡ€ΠΈΠ½Π° Π΄ΠΎ ΠΈ послС провСдСния трансплантации. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ Π±Π΅Π»ΠΊΠ° полосы 3 Π±Ρ‹Π» сниТСн Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 1 мСсяца, Π³Π»ΠΈΠΊΠΎΡ„ΠΎΡ€ΠΈΠ½Π° – Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 7 мСсяцСв послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ с ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½Ρ‹Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ Π±Π΅Π»ΠΊΠΎΠ² Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π½Π° 50% ΠΊ 7-ΠΌ суткам ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ контроля. Π’Π°ΠΊΠΆΠ΅ Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π»ΠΎΡΡŒ сниТСниС содСрТания спСктрина Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2 мСсяцСв послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ с ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ сниТСниСм Π½Π° 30% ΠΊ 1 мСсяцу. Π£ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ Π°Π½Π°Π»ΠΈΠ· Π±Π΅Π»ΠΊΠΎΠ² ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ эритроцитов выявил сниТСниС количСства Π³Π»ΠΈΠΊΠΎΡ„ΠΎΡ€ΠΈΠ½Π° Π΄ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ дальнСйшСС Π΅Π³ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2 мСсяцСв посттрасплантационного ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°. МаксимальноС сниТСниС показатСля – Π½Π° 72% – Π±Ρ‹Π»ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ ΠΊ 7-ΠΌ суткам послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, наблюдалось сниТСниС количСства спСктрина ΠΈ Π±Π΅Π»ΠΊΠ° полосы 3 Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 1 мСсяца Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π½Π° 60% ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ контроля. Π£ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² измСнСния Π² Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ эритроцитарных ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Π² ΠΎΡ‚Π΄Π°Π»Π΅Π½Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ: Ρƒ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΏΠΎΡ‡ΠΊΠΈ сниТСниС Π² 2 Ρ€Π°Π·Π° количСства спСктрина ΠΈ Π±Π΅Π»ΠΊΠ° полосы 3 ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΎΡΡŒ Π½Π° 2-ΠΉ мСсяц, Ρƒ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ сниТСниС Π³Π»ΠΈΠΊΠΎΡ„ΠΎΡ€ΠΈΠ½Π° Π² 2,3 Ρ€Π°Π·Π° – ΠΊ 1-ΠΌΡƒ мСсяцу послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Π’Π°ΠΊΠΆΠ΅ Π² ΠΎΠ±Π΅ΠΈΡ… Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² рСгистрировался рост ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π°ΠΊΡ‚ΠΈΠ½Π° ΠΊ 1-ΠΌΡƒ мСсяцу послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. ВыявлСнныС измСнСния количСства Π±Π΅Π»ΠΊΠΎΠ² Π² Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠΉ Ρ„Π°Π·Π΅ эритроцитарных ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΡΠΎΡ‡Π΅Ρ‚Π°Π»ΠΈΡΡŒ с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ показатСлями эритроцитов. Π£ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎΡ‡ΠΊΠΈ сниТСниС ЭЀПЭ ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ наблюдалось Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2 мСсяцСв, Ρƒ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ измСнСния Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ зафиксированы Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 1 мСсяца. Π£ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΎΠ±Π΅ΠΈΡ… Π³Ρ€ΡƒΠΏΠΏ Π±Ρ‹Π»ΠΎ выявлСно ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ ЭЀПЭ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π‘ΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, Ρ‡Ρ‚ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ эритроцитов сопряТСно с ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ содСрТания Π³Π»ΠΈΠΊΠΎΡ„ΠΎΡ€ΠΈΠ½Π° ΠΈ Π±Π΅Π»ΠΊΠ° полосы 3, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π² процСссС Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ эритроцитов Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² послС трансплантации ΠΏΠ΅Ρ‡Π΅Π½ΠΈ/ΠΏΠΎΡ‡ΠΊΠΈ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ взаимосвязСй Ρ‚Π°ΠΊΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ², ΠΊΠ°ΠΊ спСктрин, Π±Π΅Π»ΠΎΠΊ полосы 3, Π³Π»ΠΈΠΊΠΎΡ„ΠΎΡ€ΠΈΠ½. ИзмСнСниС Π°ΠΊΡ‚ΠΈΠ½Π° опрСдСляСт сдСрТиваниС роста Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ эритроцитов Ρƒ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ²

    Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors

    Get PDF
    Type 2 internal ribosomal entry sites (IRESs) of encephalomyocarditis virus (EMCV), foot-and-mouth disease virus (FMDV) and other picornaviruses comprise five major domains H-L. Initiation of translation on these IRESs begins with specific binding of the central domain of initiation factor, eIF4G to the J-K domains, which is stimulated by eIF4A. eIF4G/eIF4A then restructure the region of ribosomal attachment on the IRES and promote recruitment of ribosomal 43S pre-initiation complexes. In addition to canonical translation factors, type 2 IRESs also require IRES trans-acting factors (ITAFs) that are hypothesized to stabilize the optimal IRES conformation that supports efficient ribosomal recruitment: the EMCV IRES is stimulated by pyrimidine tract binding protein (PTB), whereas the FMDV IRES requires PTB and ITAF45. To test this hypothesis, we assessed the effect of ITAFs on the conformations of EMCV and FMDV IRESs by comparing their influence on hydroxyl radical cleavage of these IRESs from the central domain of eIF4G. The observed changes in cleavage patterns suggest that cognate ITAFs promote similar conformational changes that are consistent with adoption by the IRESs of comparable, more compact structures, in which domain J undergoes local conformational changes and is brought into closer proximity to the base of domain I

    OPTIMIZATION OF PREOPERATIVE ASSESSMENT IN TRANSVAGINAL PELVIC RECONSTRUCTIVE PLASTIC SURGERY FOR THE TREATMENT OF PELVIC ORGANS PROLAPSE

    No full text
    The objective of this study was to optimize the preoperative assessment in transvaginal pelvic reconstructive plastic surgery for the treatment of pelvic organs prolapse. Materials and methods: We conducted the quantitative and qualitative analysis of vaginal biocenosis in 68 female patients before and after administration of Polygynax. It was shown that Polygynax improves vaginal biocenosis owing to the reduction of microbial content. Therefore, the use of Polygynax for the preoperative assessment can be an effective method of prophylaxis of infectious and inflammatory complications and promote tissue regeneration after transvaginal pelvic reconstructive plastic surgery for the treatmentof pelvic organs prolapse

    MODERN GENETIC ASPECTS OF PELVIC ORGAN PROLAPS

    No full text
    The review of the russian and foreign literature on pelvic organ prolapse in women and its genetic aspects. According to the literature, an association of pelvic organ prolapse (POP) with a number of single nucleotide polymorphisms (SNPs) on chromosome 9q21, which are involved in the formation of elastic fibers of the connective tissue (CT). The association also polymorphism fibullin – 5 (FBLN5) and lysyl oxidase – like 1 (LOXL1) and theirrelationship to POP. Based on the literature, studies aimed at identifying the genetic nature of the POP, are incomplete and are important for the identification of risk groups who have a predisposition to POP, selecting the optimal policy for patients at risk and the initial stages of POP

    Physiology and pathology of extracellular vesicules

    No full text
    This year marks the 50th anniversary of the first publication about blood plasma microparticles. Initially considered as cell fragments or β€œplatelet dust”, extracellular vesicles currently attracted the attention of biochemists, biophysicists, physicians, pharmacists around the world. They are heterogeneous in structure and derived from many cell types, express different antigen and contain variety of biomolecules that determines wide range of biological activity, including procoagulant, regenerative, immunomodulating, and others. They play an important role in the pathophysiology of different diseases and conditions – from infarction, injuries and pregnancies to the β€œgraft versus host” disease. The vesicles as medicaments and their carriers, as well as the drugs that affect them, are a rapidly developing field of research

    Electrokinetic, oxidative and aggregation properties of red blood cells in the postoperative period following kidney transplantation

    Get PDF
    Objective: to study the electrokinetic and aggregation properties, as well as the pro-oxidant and antioxidant processes in red blood cells following kidney transplantation in donors and in recipients in the postoperative period. Materials and methods. Blood from 12 recipients and 5 kidney donors over time – before transplantation, as well as at week 1, months 1, 2, 7, 10 and 12 after surgery, as well as from 8 healthy volunteers who formed the control group. We used microelectrophoresis to measure the electrophoretic mobility of red blood cells, characterizing the electrokinetic properties of cells. Aggregation was calculated microscopically by counting unaggregated red blood cells. Malondialdehyde concentration was measured spectrophotometrically at its absorbance maximum at 530 nm by reaction with thiobarbituric acid. Catalase activity was analyzed by reducing hydrogen peroxide in the sample spectrophotometrically at 240 nm wavelength. The obtained values were compared using the Mann–Whitney U test. Results. Decreased electrophoretic mobility of red blood cells within 2 months after transplantation was associated with increased malondialdehyde concentration and erythrocyte aggregation, decreased catalase activity in kidney recipients, followed by restoration of indicators to the control values. Electrophoretic mobility of red blood cells decreased, while malondialdehyde concentrations increased in donors after surgery. However, the increase was less pronounced than in recipients. The changes indicate that the postoperative period causes changes at the cellular level both in donors and in recipients. This is manifested by decreased stability of erythrocyte membrane structure, which is largely determined by lipid peroxidation processes. At the systemic level, a change in the electrophoretic mobility of red blood cells indicates a stress reaction before and after kidney transplantation in recipients within 2 months after surgery, and in donors in 1–2 months in the postoperative period with gradual increase in the body’s resistance. Conclusion. Kidney transplantation is manifested at the cellular and systemic levels. At the cellular level, there is decreased stability of the membrane structure, which is largely determined by lipid peroxidation processes. At the systemic level, a change in the electrophoretic mobility of red blood cells indicates a stress reaction with gradual increase in the body’s resistance. The data obtained demonstrate changes in the functional properties of red blood cells both in kidney transplant recipients and in donors. These changes need to be taken into account when carrying out therapeutic measures
    corecore