9,338 research outputs found

    Supersymmetry Reach of Tevatron Upgrades: The Large tanβ\tan\beta Case

    Full text link
    The Yukawa couplings of the tau lepton and the bottom quark become comparable to, or even exceed, electroweak gauge couplings for large values of the SUSY parameter tanβ\tan\beta. As a result, the lightest tau slepton \ttau_1 and bottom squark \tb_1 can be significantly lighter than corresponding sleptons and squarks of the first two generations. Gluino, chargino and neutralino decays to third generation particles are significantly enhanced when tanβ\tan\beta is large. This affects projections for collider experiment reach for supersymmetric particles. In this paper, we evaluate the reach of the Fermilab Tevatron ppˉp\bar p collider for supersymmetric signals in the framework of the mSUGRA model. We find that the reach via signatures with multiple isolated leptons (ee and μ\mu) is considerably reduced. For very large tanβ\tan\beta, the greatest reach is attained in the multi-jet+\eslt signature. Some significant extra regions may be probed by requiring the presence of an identified bb-jet in jets+\eslt events, or by requiring one of the identified leptons in clean trilepton events to actually be a hadronic 1 or 3 charged prong tau. In an appendix, we present formulae for chargino, neutralino and gluino three body decays which are valid at large tanβ\tan\beta.Comment: 31 page Revtex file including 10 PS figure

    Ground-state degeneracies leave recognizable topological scars in the one-particle density

    Full text link
    In Kohn-Sham density functional theory (KS-DFT) a fictitious system of non-interacting particles is constructed having the same ground-state (GS) density as the physical system of interest. A fundamental open question in DFT concerns the ability of an exact KS calculation to spot and characterize the GS degeneracies in the physical system. In this article we provide theoretical evidence suggesting that the GS density, as a function of position on a 2D manifold of parameters affecting the external potential, is "topologically scarred" in a distinct way by degeneracies. These scars are sufficiently detailed to enable determination of the positions of degeneracies and even the associated Berry phases. We conclude that an exact KS calculation can spot and characterize the degeneracies of the physical system

    Weighing the universe with accelerators and detectors

    Get PDF
    Suppose the lightest superpartner (LSP) is observed at colliders, and WIMPs are detected in explicit experiments. We point out that one cannot immediately conclude that cold dark matter (CDM) of the universe has been observed, and we determine what measurements are necessary before such a conclusion is meaningful. We discuss the analogous situation for neutrinos and axions; in the axion case we have not found a way to conclude axions are the CDM even if axions are detected.Comment: 15 pages, 3 figures; minor changes included and typos fixe

    Probing Neutralino Resonance Annihilation via Indirect Detection of Dark Matter

    Full text link
    The lightest neutralino of R-parity conserving supersymmetric models serves as a compelling candidate to account for the presence of cold dark matter in the universe. In the minimal supergravity (mSUGRA) model, a relic density can be found in accord with recent WMAP data for large values of the parameter tanβ\tan\beta, where neutralino annihilation in the early universe occurs via the broad s-channel resonance of the pseudoscalar Higgs boson AA. We map out rates for indirect detection of neutralinos via 1. detection of neutrinos arising from neutralino annihilation in the core of the earth or sun and 2. detection of gamma rays, antiprotons and positrons arising from neutralino annihilation in the galactic halo. If indeed AA-resonance annihilation is the main sink for neutralinos in the early universe, then signals may occur in the gamma ray, antiproton and positron channels, while a signal in the neutrino channel would likely be absent. This is in contrast to the hyperbolic branch/focus point (HB/FP) region where {\it all} indirect detection signals are likely to occur, and also in contrast to the stau co-annihilation region, where {\it none} of the indirect signals are likely to occur.Comment: 12 pages including 4 eps figure

    Probing Minimal Supergravity at the CERN LHC for Large tanβ\tan\beta

    Get PDF
    For large values of the minimal supergravity model parameter tanβ\tan\beta, the tau lepton and the bottom quark Yukawa couplings become large, leading to reduced masses of τ\tau-sleptons and bb-squarks relative to their first and second generation counterparts, and to enhanced decays of charginos and neutralinos to τ\tau-leptons and bb-quarks. We evaluate the reach of the CERN LHC pppp collider for supersymmetry in the mSUGRA model parameter space. We find that values of mtg15002000m_{\tg}\sim 1500-2000 GeV can be probed with just 10 fb1^{-1} of integrated luminosity for tanβ\tan\beta values as high as 45, so that mSUGRA cannot escape the scrutiny of LHC experiments by virtue of having a large value of tanβ\tan\beta. We also perform a case study of an mSUGRA model at tanβ=45\tan\beta =45 where \tz_2\to \tau\ttau_1 and \tw_1\to \ttau_1\nu_\tau with 100\sim 100% branching fraction. In this case, at least within our simplistic study, we show that a di-tau mass edge, which determines the value of m_{\tz_2}-m_{\tz_1}, can still be reconstructed. This information can be used as a starting point for reconstructing SUSY cascade decays on an event-by-event basis, and can provide a strong constraint in determining the underlying model parameters. Finally, we show that for large tanβ\tan\beta there can be an observable excess of τ\tau leptons, and argue that τ\tau signals might serve to provide new information about the underlying model framework.Comment: 22 page REVTEX file including 8 figure

    Mixed Higgsino Dark Matter from a Large SU(2) Gaugino Mass

    Full text link
    We observe that in SUSY models with non-universal GUT scale gaugino mass parameters, raising the GUT scale SU(2) gaugino mass |M_2| from its unified value results in a smaller value of -m_{H_u}^2 at the weak scale. By the electroweak symmetry breaking conditions, this implies a reduced value of \mu^2 {\it vis \`a vis} models with gaugino mass unification. The lightest neutralino can then be mixed Higgsino dark matter with a relic density in agreement with the measured abundance of cold dark matter (DM). We explore the phenomenology of this high |M_2| DM model. The spectrum is characterized by a very large wino mass and a concomitantly large splitting between left- and right- sfermion masses. In addition, the lighter chargino and three light neutralinos are relatively light with substantial higgsino components. The higgsino content of the LSP implies large rates for direct detection of neutralino dark matter, and enhanced rates for its indirect detection relative to mSUGRA. We find that experiments at the LHC should be able to discover SUSY over the portion of parameter space where m_{\tg} \alt 2350-2750 ~GeV, depending on the squark mass, while a 1 TeV electron-positron collider has a reach comparable to that of the LHC. The dilepton mass spectrum in multi-jet + \ell^+\ell^- + \eslt events at the LHC will likely show more than one mass edge, while its shape should provide indirect evidence for the large higgsino content of the decaying neutralinos.Comment: 36 pages with 26 eps figure

    The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models

    Get PDF
    In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m1/2m_{1/2} is the only soft SUSY breaking term to receive contributions at tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale McM_c beyond the GUT scale, and that additional renormalization group running takes place between McM_c and MGUTM_{GUT} as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the inoMSB model, and compute the SUSY reach including cuts and triggers approriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. %either with or without %identified tau leptons. At the CERN LHC, values of m1/2=1000m_{1/2}=1000 (1160) GeV can be probed with 10 (100) fb1^{-1} of integrated luminosity, corresponding to a reach in terms of mtgm_{\tg} of 2150 (2500) GeV. The inoMSB model and mSUGRA can likely only be differentiated at a linear e+ee^+e^- collider with sufficient energy to produce sleptons and charginos.Comment: 17 page revtex file with 9 PS figure

    Target dark matter detection rates in models with a well-tempered neutralino

    Get PDF
    In the post-LEP2 era, and in light of recent measurements of the cosmic abundance of cold dark matter (CDM) in the universe from WMAP, many supersymmetric models tend to predict 1. an overabundance of CDM and 2. pessimistically low rates for direct detection of neutralino dark matter. However, in models with a ``well-tempered neutralino'', where the neutralino composition is adjusted to give the measured abundance of CDM, the neutralino is typically of the mixed bino-wino or mixed bino-higgsino state. Along with the necessary enhancement to neutralino annihilation rates, these models tend to give elevated direct detection scattering rates compared to predictions from SUSY models with universal soft breaking terms. We present neutralino direct detection cross sections from a variety of models containing a well-tempered neutralino, and find cross section asymptotes with detectable scattering rates. These asymptotic rates provide targets that various direct CDM detection experiments should aim for. In contrast, in models where the neutralino mass rather than its composition is varied to give the WMAP relic density via either resonance annihilation or co-annihilation, the neutralino remains essentially bino-like, and direct detection rates may be below the projected reaches of all proposed experiments.Comment: 13 pages including 1 EPS figur

    Reach of the Fermilab Tevatron for minimal supergravity in the region of large scalar masses

    Full text link
    The reach of the Fermilab Tevatron for supersymmetric matter has been calculated in the framework of the minimal supergravity model in the clean trilepton channel. Previous analyses of this channel were restricted to scalar masses m_0<= 1 TeV. We extend the analysis to large values of scalar masses m_0\sim 3.5 TeV. This includes the compelling hyperbolic branch/focus point (HB/FP) region, where the superpotential \mu parameter becomes small. In this region, assuming a 5\sigma (3\sigma) signal with 10 (25) fb^{-1} of integrated luminosity, the Tevatron reach in the trilepton channel extends up to m_{1/2}\sim 190 (270) GeV independent of \tan\beta . This corresponds to a reach in terms of the gluino mass of m_{\tg}\sim 575 (750) GeV.Comment: 11 page latex file including 6 EPS figures; several typos corrected and references adde
    corecore