6,799 research outputs found

    Modification of Born impurity scattering near the surface of d-wave superconductors and influence of external magnetic field

    Full text link
    We study the influence of Born impurity scattering on the zero-energy Andreev bound states near the surface of a d-wave superconductor with and without an externally applied magnetic field. Without an external magnetic field we show that the effect of Born impurity scattering is stronger at the surface than in the bulk. In the presence of an external magnetic field the splitting of the zero-energy Andreev bound states is shown to have a nonmonotonous temperature dependence. Born impurity scattering does not wash out the peak splitting, but instead the peak splitting is shown to be quite robust against impurities. We also show that a nonzero gap renormalization appears near the surface.Comment: 9 pages, 17 figures; minor changes; new figure 11; accepted for publication in Phys. Rev.

    Spectral properties of a partially spin-polarized one-dimensional Hubbard/Luttinger superfluid

    Full text link
    We calculate the excitation spectra of a spin-polarized Hubbard chain away from half-filling, using a high-precision momentum-resolved time-dependent Density Matrix Renormalization Group method. Focusing on the U<0 case, we present in some detail the single-fermion, pair, density and spin spectra, and discuss how spin-charge separation is altered for this system. The pair spectra show a quasi-condensate at a nonzero momentum proportional to the polarization, as expected for this Fulde-Ferrel-Larkin-Ovchinnikov-like superfluid.Comment: 4 pages, 3 low resolution color fig

    Finite temperature phase diagram of a polarized Fermi gas in an optical lattice

    Full text link
    We present phase diagrams for a polarized Fermi gas in an optical lattice as a function of temperature, polarization, and lattice filling factor. We consider the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO), Sarma or breached pair (BP), and BCS phases, and the normal state and phase separation. We show that the FFLO phase appears in a considerable portion of the phase diagram. The diagrams have two critical points of different nature. We show how various phases leave clear signatures to momentum distributions of the atoms which can be observed after time of flight expansion.Comment: Journal versio

    Pairing of a trapped resonantly-interacting fermion mixture with unequal spin populations

    Full text link
    We consider the phase separation of a trapped atomic mixture of fermions with unequal spin populations near a Feshbach resonance. In particular, we determine the density profile of the two spin states and compare with the recent experiments of Partridge et al. (cond-mat/0511752). Overall we find quite good agreement. We identify the remaining discrepancies and pose them as open problems.Comment: 4 figures, 4+ pages, revtex

    Influence of high magnetic fields on superconducting transition of one-dimensional Nb and MoGe nanowires

    Full text link
    The effects of strong magnetic field on superconducting Nb and MoGe nanowires with diameter 10\sim10 nm have been studied. We have found that the Langer-Ambegaokar-McCumber-Halperin (LAMH) theory of thermally activated phase slips is applicable in a wide range of magnetic fields and describes well the temperature dependence of the wire resistance, over eleven orders of magnitude. The field dependence of the critical temperature, TcT_{c}, extracted from the LAMH fits is in good quantitative agreement with the theory of pair-breaking perturbations that takes into account both spin and orbital contributions. The extracted spin-orbit scattering time agrees with an estimate τsoτ(c/Ze2)4\tau_{so}\simeq \tau(\hbar c/ Ze^{2})^{4}, where τ\tau is the elastic scattering time and ZZ is the atomic number.Comment: accepted for publication in Physical Review Letter

    Magneto-elastic quantum fluctuations and phase transitions in the iron superconductors

    Full text link
    We examine the relevance of magneto-elastic coupling to describe the complex magnetic and structural behaviour of the different classes of the iron superconductors. We model the system as a two-dimensional metal whose magnetic excitations interact with the distortions of the underlying square lattice. Going beyond mean field we find that quantum fluctuation effects can explain two unusual features of these materials that have attracted considerable attention. First, why iron telluride orders magnetically at a non-nesting wave-vector (π/2,π/2)(\pi/2, \pi/2) and not at the nesting wave-vector (π,0)(\pi, 0) as in the iron arsenides, even though the nominal band structures of both these systems are similar. And second, why the (π,0)(\pi, 0) magnetic transition in the iron arsenides is often preceded by an orthorhombic structural transition. These are robust properties of the model, independent of microscopic details, and they emphasize the importance of the magneto-elastic interaction.Comment: 4 pages, 3 figures; minor change

    Profiles of near-resonant population-imbalanced trapped Fermi gases

    Full text link
    We investigate the density profiles of a partially polarized trapped Fermi gas in the BCS-BEC crossover region using mean field theory within the local density approximation. Within this approximation the gas is phase separated into concentric shells. We describe how the structure of these shells depends upon the polarization and the interaction strength. A Comparison with experiments yields insight into the possibility of a polarized superfluid phase.Comment: 4 pages, 5 Figures, Published versio

    Neutrality of a magnetized two-flavor quark superconductor

    Full text link
    We investigate the effect of electric and color charge neutrality on the two-flavor color superconducting (2SC) phase of cold and dense quark matter in presence of constant external magnetic fields and at moderate baryon densities. Within the framework of the Nambu-Jona-Lasinio (NJL) model, we study the inter-dependent evolution of the quark's BCS gap and constituent mass with increasing density and magnetic field. While confirming previous results derived for the highly magnetized 2SC phase with color neutrality alone, we obtain new results as a consequence of imposing charge neutrality. In the charge neutral gapless 2SC phase (g2SC), a large magnetic field drives the color superconducting phase transition to a crossover, while the chiral phase transition is first order. At larger diquark-to-scalar coupling ratio GD/GSG_D/G_S, where the 2SC phase is preferred, we see hints of the Clogston-Chandrasekhar limit at a very large value of the magnetic field (B1019B\sim 10^{19}G), but this limit is strongly affected by Shubnikov de Haas-van Alphen oscillations of the gap, indicating the transition to a domain-like state.Comment: 19 pages, 7 figures, Matches with the published versio

    Local density of states at polygonal boundaries of d-wave superconductors

    Full text link
    Besides the well-known existence of Andreev bound states, the zero-energy local density of states at the boundary of a d-wave superconductor strongly depends on the boundary geometry itself. In this work, we examine the influence of both a simple wedge-shaped boundary geometry and a more complicated polygonal or faceted boundary structure on the local density of states. For a wedge-shaped boundary geometry, we find oscillations of the zero-energy density of states in the corner of the wedge, depending on the opening angle of the wedge. Furthermore, we study the influence of a single Abrikosov vortex situated near a boundary, which is of either macroscopic or microscopic roughness.Comment: 10 pages, 11 figures; submitted to Phys. Rev.

    Transport in a Dissipative Luttinger Liquid

    Full text link
    We study theoretically the transport through a single impurity in a one-channel Luttinger liquid coupled to a dissipative (ohmic) bath . For non-zero dissipation η\eta the weak link is always a relevant perturbation which suppresses transport strongly. At zero temperature the current voltage relation of the link is Iexp(E0/eV)I\sim \exp(-E_0/eV) where E0η/κE_0\sim\eta/\kappa and κ\kappa denotes the compressibility. At non-zero temperature TT the linear conductance is proportional to exp(CE0/kBT)\exp(-\sqrt{{\cal C}E_0/k_BT}). The decay of Friedel oscillation saturates for distance larger than Lη1/ηL_{\eta}\sim 1/\eta from the impurity.Comment: 4 page
    corecore