263 research outputs found

    Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps

    Full text link
    A density functional theory for colloidal dynamics is presented which includes hydrodynamic interactions between the colloidal particles. The theory is applied to the dynamics of colloidal particles in an optical trap which switches periodically in time from a stable to unstable confining potential. In the absence of hydrodynamic interactions, the resulting density breathing mode, exhibits huge oscillations in the trap center which are almost completely damped by hydrodynamic interactions. The predicted dynamical density fields are in good agreement with Brownian dynamics computer simulations

    Concentration Dependen Sedimentation of Collidal Rods

    Full text link
    In the first part of this paper, an approximate theory is developed for the leading order concentration dependence of the sedimentation coefficient for rod-like colloids/polymers/macromolecules. To first order in volume fraction ϕ\phi of rods, the sedimentation coefficient is written as 1+αϕ1+\alpha \phi. For large aspect ratio L/D (L is the rod length, D it's thickness) α\alpha is found to very like ∝(LD)2/log⁥(LD)\propto (\frac{L}{D})^2/\log (\frac{L}{D}). This theoretical prediction is compared to experimental results. In the second part, experiments on {\it fd}-virus are described, both in the isotropic and nematic phase. First order in concentration results for this very long and thin (semi-flexible) rod are in agreement with the above theoretical prediction. Sedimentation profiles for the nematic phase show two sedimentation fronts. This result indicates that the nematic phase becomes unstable with the respect to isotropic phase during sedimentation.Comment: Submitted to J. Chem. Phys. See related webpage http://www.elsie.brandeis.ed

    A Case Study of Sedimentation of Charged Colloids: The Primitive Model and the Effective One-Component Approach

    Full text link
    Sedimentation-diffusion equilibrium density profiles of suspensions of charge-stabilized colloids are calculated theoretically and by Monte Carlo simulation, both for a one-component model of colloidal particles interacting through pairwise screened-Coulomb repulsions and for a three-component model of colloids, cations, and anions with unscreened-Coulomb interactions. We focus on a state point for which experimental measurements are available [C.P. Royall et al., J. Phys.: Cond. Matt. {\bf 17}, 2315 (2005)]. Despite the apparently different picture that emerges from the one- and three-component model (repelling colloids pushing each other to high altitude in the former, versus a self-generated electric field that pushes the colloids up in the latter), we find similar colloidal density profiles for both models from theory as well as simulation, thereby suggesting that these pictures represent different view points of the same phenomenon. The sedimentation profiles obtained from an effective one-component model by MC simulations and theory, together with MC simulations of the multi-component primitive model are consistent among themselves, but differ quantitatively from the results of a theoretical multi-component description at the Poisson-Boltzmann level. We find that for small and moderate colloid charge the Poisson-Boltzmann theory gives profiles in excellent agreement with the effective one-component theory if a smaller effective charge is used. We attribute this discrepancy to the poor treatment of correlations in the Poisson-Boltzmann theory.Comment: 9 pages, 7 figure

    Depletion forces in non-equilibrium

    Full text link
    The concept of effective depletion forces between two fixed big colloidal particles in a bath of small particles is generalized to a non-equilibrium situation where the bath of small Brownian particles is flowing around the big particles with a prescribed velocity. In striking contrast to the equilibrium case, the non-equilibrium forces violate Newton's third law, are non-conservative and strongly anisotropic, featuring both strong attractive and repulsive domains.Comment: 4 pages, 3 figure

    Depletion-Induced Chiral Chain Formation of Magnetic Spheres

    Get PDF
    Experimental evidence is presented for the spontaneous formation of chiral configurations in bulk dispersions of magnetized colloids that interact by a combination of anisotropic dipolar interactions and isotropic depletion attractions. The colloids are superparamagnetic silica spheres, magnetized and aligned by a carefully tuned uniform external magnetic field; isotropic attractions are induced by using poly(ethylene oxide) polymers as depleting agents. At specific polymer concentrations, sphere chains wind around each other to form helical structures–of the type that previously have only been observed in simulations on small sets of unconfined dipolar spheres with additional isotropic interactions

    Self-assembly of charged colloidal cubes

    Get PDF
    In this work, we show how and why the interactions between charged cubic colloids range from radially isotropic to strongly directionally anisotropic, depending on tuneable factors. Using molecular dynamics simulations, we illustrate the effects of typical solvents to complement experimental investigations of cube assembly. We find that in low-salinity water solutions, where cube self-assembly is observed, the colloidal shape anisotropy leads to the strongest attraction along the corner-to-corner line, followed by edge-to-edge, with a face-to-face configuration of the cubes only becoming energetically favorable after the colloids have collapsed into the van der Waals attraction minimum. Analysing the potential of mean force between colloids with varied cubicity, we identify the origin of the asymmetric microstructures seen in experiment. This journal is © The Royal Society of Chemistry.Austrian Science Fund, FWF: START-Projekt Y 627-N27Russian Science Foundation, RSF: 19-12-00209We thank Prof. A. Ivanov for helpful discussions. F. D. wants to acknowledge Dr Leon Bremer and Dr Harm Langermans for their help with the Langmuir–Blodgett experiments. This research has been supported by the Russian Science Foundation Grant No. 19-12-00209. The authors acknowledge support from the Austrian Research Fund (FWF), START-Projekt Y 627-N27. Computer simulations were performed using the Vienna Scientific Cluster (VSC-3 and VSC-4)

    Dynamic density functional study of a driven colloidal particle in polymer solutions

    Full text link
    The Dynamic Density Functional (DDF) theory and standard Brownian dynamics simulations (BDS) are used to study the drifting effects of a colloidal particle in a polymer solution, both for ideal and interacting polymers. The structure of the stationary density distributions and the total induced current are analyzed for different drifting rates. We find good agreement with the BDS, which gives support to the assumptions of the DDF theory. The qualitative aspect of the density distribution are discussed and compared to recent results for driven colloids in one-dimensional channels and to analytical expansions for the ideal solution limit

    Characterization of anisotropic nano-particles by using depolarized dynamic light scattering in the near field

    Full text link
    Light scattering techniques are widely used in many fields of condensed and sof t matter physics. Usually these methods are based on the study of the scattered light in the far field. Recently, a new family of near field detection schemes has been developed, mainly for the study of small angle light scattering. These techniques are based on the detection of the light intensity near to the sample, where light scattered at different directions overlaps but can be distinguished by Fourier transform analysis. Here we report for the first time data obtained with a dynamic near field scattering instrument, measuring both polarized and depolarized scattered light. Advantages of this procedure over the traditional far field detection include the immunity to stray light problems and the possibility to obtain a large number of statistical samples for many different wave vectors in a single instantaneous measurement. By using the proposed technique we have measured the translational and rotational diffusion coefficients of rod-like colloidal particles. The obtained data are in very good agreement with the data acquired with a traditional light scattering apparatus.Comment: Published in Optics Express. This version has changes in bibliograph

    Geometric origin of mechanical properties of granular materials

    Full text link
    Some remarkable generic properties, related to isostaticity and potential energy minimization, of equilibrium configurations of assemblies of rigid, frictionless grains are studied. Isostaticity -the uniqueness of the forces, once the list of contacts is known- is established in a quite general context, and the important distinction between isostatic problems under given external loads and isostatic (rigid) structures is presented. Complete rigidity is only guaranteed, on stability grounds, in the case of spherical cohesionless grains. Otherwise, the network of contacts might deform elastically in response to load increments, even though grains are rigid. This sets an uuper bound on the contact coordination number. The approximation of small displacements (ASD) allows to draw analogies with other model systems studied in statistical mechanics, such as minimum paths on a lattice. It also entails the uniqueness of the equilibrium state (the list of contacts itself is geometrically determined) for cohesionless grains, and thus the absence of plastic dissipation. Plasticity and hysteresis are due to the lack of such uniqueness and may stem, apart from intergranular friction, from small, but finite, rearrangements, in which the system jumps between two distinct potential energy minima, or from bounded tensile contact forces. The response to load increments is discussed. On the basis of past numerical studies, we argue that, if the ASD is valid, the macroscopic displacement field is the solution to an elliptic boundary value problem (akin to the Stokes problem).Comment: RevTex, 40 pages, 26 figures. Close to published paper. Misprints and minor errors correcte
    • 

    corecore