3 research outputs found

    Correlator Bank Detection of GW chirps. False-Alarm Probability, Template Density and Thresholds: Behind and Beyond the Minimal-Match Issue

    Full text link
    The general problem of computing the false-alarm rate vs. detection-threshold relationship for a bank of correlators is addressed, in the context of maximum-likelihood detection of gravitational waves, with specific reference to chirps from coalescing binary systems. Accurate (lower-bound) approximants for the cumulative distribution of the whole-bank supremum are deduced from a class of Bonferroni-type inequalities. The asymptotic properties of the cumulative distribution are obtained, in the limit where the number of correlators goes to infinity. The validity of numerical simulations made on small-size banks is extended to banks of any size, via a gaussian-correlation inequality. The result is used to estimate the optimum template density, yielding the best tradeoff between computational cost and detection efficiency, in terms of undetected potentially observable sources at a prescribed false-alarm level, for the simplest case of Newtonian chirps.Comment: submitted to Phys. Rev.
    corecore