28 research outputs found

    Electromigration Behavior of 3D-IC TSV Interconnects

    No full text
    International audienceThe electromigration (EM) behavior of Through Silicon Via (TSV) interconnects used for 3D integration is studied. Impact of the TSV section size on EM lifetime and consideration of increasing metal level thickness are reported. Void nucleates and grows right after TSV, in the adjacent metal level. The TSV section size at metal level interface is critical for high EM performance. Thickness increase of metal level is revealed to not directly increase EM robustness, since irregular void nucleation and growth impact expected performances

    Suspended Nanochannel Resonator Arrays with Piezoresistive Sensors for High-Throughput Weighing of Nanoparticles in Solution

    No full text
    As the use of nanoparticles is expanding in many industrial sectors, pharmaceuticals, cosmetics among others, flow-through characterization techniques are often required for in-line metrology. Among the parameters of interest, the concentration and mass of nanoparticles can be informative for yield, aggregates formation or even compliance with regulation. The Suspended Nanochannel Resonator (SNR) can offer mass resolution down to the attogram scale precision in a flow-through format. However, since the readout has been based on the optical lever, operating more than a single resonator at a time has been challenging. Here we present a new architecture of SNR devices with piezoresistive sensors that allows simultaneous readout from multiple resonators. To enable this architecture, we push the limits of nanofabrication to create implanted piezoresistors of nanoscale thickness (∼100 nm) and implement an algorithm for designing SNRs with dimensions optimized for maintaining attogram scale precision. Using 8-in. processing technology, we fabricate parallel array SNR devices which contain ten resonators. While maintaining a precision similar to that of the optical lever, we demonstrate a throughput of 40 »000 particles per hour - an order of magnitude improvement over a single device with an analogous flow rate. Finally, we show the capability of the SNR array device for measuring polydisperse solutions of gold particles ranging from 20 to 80 nm in diameter. We envision that SNR array devices will open up new possibilities for nanoscale metrology by measuring not only synthetic but also biological nanoparticles such as exosomes and viruses

    Reliability of TSV interconnects: Electromigration, thermal cycling, and impact on above metal level dielectric

    No full text
    International audienceIn this paper, reliability of Through Silicon via (TSV) interconnects is analyzed for two technologies. First part presents an exhaustive analysis of Cu TSV-last approach of 2 μm diameter and 15 μm of depth. Thermal cycling and electromigration stresses are performed on dedicated devices. Thermal cycling is revealed to induce only defects on non-mature processes. Electromigration induces voids in adjacent metal level, right at TSV interface. Moreover, the expected lifetime benefit by increasing line thickness does not occur due to increasing dispersion of voiding mechanism. Second part covers reliability of Cu TSV-middle technology, of 10 μm diameter and 80 μm depth, with thermal cycling, BEoL dielectric breakdown, and electromigration study. Thermal cycling is assessed on two designs: isolated and dense TSV patterns. Dielectric breakdown tests underline an impact of TSV on the reliability of metal level dielectrics right above TSV. Electromigration reveal similar degradation mechanism and kinetic as on TSV-last approach
    corecore