649 research outputs found

    How Water's Properties Are Encoded in Its Molecular Structure and Energies.

    Get PDF
    How are water's material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth's living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies-water's solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions-hydroxide and protons-diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water's molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and interact with each other through van der Waals forces. Unlike simpler liquids, water's orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties

    Novel nano-composite biomaterials that respond to light

    Get PDF
    Composites of nanoparticles and polymers are finding wide applications to alter material properties, conductivity, and utility. Here, we show that nano-composites can be designed to heat in the presence of near infrared light. This process is useful in transitioning materials through a transition temperature for a range of applications. For example, shape-memory materials (including polymers, metals, and ceramics) are those that are processed into a temporary shape and respond to some external stimuli (e.g., temperature) to undergo a transition back to a permanent shape and may be useful in a range of applications from aerospace to fabrics, to biomedical devices and microsystem components. In this work, we formulated composites of gold nanorods (\u3c1% by volume) and biodegradable networks, where exposure to infrared light induced heating and consequently, shape transitions. The heating is repeatable and tunable based on nanorod concentration and light intensity

    Energy Aware Deep Reinforcement Learning Scheduling for Sensors Correlated in Time and Space

    Get PDF
    Millions of battery-powered sensors deployed for monitoring purposes in a multitude of scenarios, e.g., agriculture, smart cities, industry, etc., require energy-efficient solutions to prolong their lifetime. When these sensors observe a phenomenon distributed in space and evolving in time, it is expected that collected observations will be correlated in time and space. In this paper, we propose a Deep Reinforcement Learning (DRL) based scheduling mechanism capable of taking advantage of correlated information. We design our solution using the Deep Deterministic Policy Gradient (DDPG) algorithm. The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates, to ensure accurate collection of observations, while simultaneously considering the energy available. To evaluate our scheduling mechanism, we use multiple datasets containing environmental observations obtained in multiple real deployments. The real observations enable us to model the environment with which the mechanism interacts as realistically as possible. We show that our solution can significantly extend the sensors' lifetime. We compare our mechanism to an idealized, all-knowing scheduler to demonstrate that its performance is near-optimal. Additionally, we highlight the unique feature of our design, energy-awareness, by displaying the impact of sensors' energy levels on the frequency of updates

    Governance of interdependent ecosystem services and common-pool resources

    Get PDF
    Environmental governance is recognized as a key issue in many natural and social sciences. It is highly relevant for ecosystem services and common-pool resources as well. Both fields overlap yet have typically been studied separately. Therefore, this study aimed a) to examine the emerging body of literature that incorporates concepts from both fields of research and considers governance challenges, and b) to identify policy tools and recommendations presented for addressing those challenges. The analysis of thirty-nine selected peer-review papers revealed the multiplicity of interacting governance challenges with three major categories: environmental, socioeconomic, and problems of governance itself. Governance is impeded by institutional mismatches, exclusion of local actors, corruption, and perverse policies. The proposed policy recommendations most often suggest changes in institutional arrangements and increasing scientific understanding. Meeting human needs, and increasing social equity and justice were recognized broadly as integral for improving governance, yet correlations among governance problems and solutions appear elusive. These findings extend theoretical reasoning, while carrying practical implications for policy, governance and environmental stewardship. The analysis implies that policies to improve human conditions will be key for improved environmental governance, but more research is needed to learn which types of policy recommendations prove successful given diverse local contexts

    Influence of solvent granularity on the effective interaction between charged colloidal suspensions

    Full text link
    We study the effect of solvent granularity on the effective force between two charged colloidal particles by computer simulations of the primitive model of strongly asymmetric electrolytes with an explicitly added hard sphere solvent. Apart from molecular oscillating forces for nearly touching colloids which arise from solvent and counterion layering, the counterions are attracted towards the colloidal surfaces by solvent depletion providing a simple statistical description of hydration. This, in turn, has an important influence on the effective forces for larger distances which are considerably reduced as compared to the prediction based on the primitive model. When these forces are repulsive, the long-distance behaviour can be described by an effective Yukawa pair potential with a solvent-renormalized charge. As a function of colloidal volume fraction and added salt concentration, this solvent-renormalized charge behaves qualitatively similar to that obtained via the Poisson-Boltzmann cell model but there are quantitative differences. For divalent counterions and nano-sized colloids, on the other hand, the hydration may lead to overscreened colloids with mutual attraction while the primitive model yields repulsive forces. All these new effects can be accounted for through a solvent-averaged primitive model (SPM) which is obtained from the full model by integrating out the solvent degrees of freedom. The SPM was used to access larger colloidal particles without simulating the solvent explicitly.Comment: 14 pages, 16 craphic

    Identifying and addressing barriers to implementing core electronic health record use metrics for ambulatory care: Virtual consensus conference proceedings

    Get PDF
    Precise, reliable, valid metrics that are cost-effective and require reasonable implementation time and effort are needed to drive electronic health record (EHR) improvements and decrease EHR burden. Differences exist between research and vendor definitions of metrics. PROCESS:  We convened three stakeholder groups (health system informatics leaders, EHR vendor representatives, and researchers) in a virtual workshop series to achieve consensus on barriers, solutions, and next steps to implementing the core EHR use metrics in ambulatory care. CONCLUSION:  Actionable solutions identified to address core categories of EHR metric implementation challenges include: (1) maintaining broad stakeholder engagement, (2) reaching agreement on standardized measure definitions across vendors, (3) integrating clinician perspectives, and (4) addressing cognitive and EHR burden. Building upon the momentum of this workshop\u27s outputs offers promise for overcoming barriers to implementing EHR use metrics

    Where do firms manage earnings?

    Get PDF
    Despite decades of research on how, why, and when companies manage earnings, there is a paucity of evidence about the geographic location of earnings management within multinational firms. In this study, we examine where companies manage earnings using a sample of 2,067 U.S. multinational firms from 1994 to 2009. We predict and find that firms with extensive foreign operations in weak rule of law countries have more foreign earnings management than companies with subsidiaries in locations where the rule of law is strong. We also find some evidence that profitable firms with extensive tax haven subsidiaries manage earnings more than other firms and that the earnings management is concentrated in foreign income. Apart from these results, we find that most earnings management takes place in domestic income, not foreign income.Arthur Andersen (Firm) (Arthur Andersen Faculty Fund
    corecore