198 research outputs found
Radon concentration in self-bottled mineral spring waters as a possible public health issue
Since 2013, the Council Directive 2013/51/Euratom has been regulating the content of radioactive substances in water intended for human consumption. However, mineral waters are exempted from this regulation, including self-bottled springs waters, where higher radon concentration are expected. Therefore, a systematic survey has been conducted on all the 33 mineral spring waters of Lazio (a region of Central Italy) in order to assess if such waters, when self-bottled, may be of concern for public health. Waters have been sampled in two different ways to evaluate the impact of bottling on radon concentration. Water sampling was possible for 20 different spring waters, with 6 samples for each one. The results show that 2 (10%) of measured mineral spring waters returned radon concentrations higher than 100âBqâLâ1, i.e., the parametric value established by the Council Directive. These results, if confirmed by other surveys involving a higher number of mineral spring waters, would suggest regulating also these waters, especially in countries like Italy for which: (i) mineral water consumption is significant; (ii) mineral concession owners generally allow the consumers to fill bottles and containers, intended for transport and subsequent consumption, directly from public fountains or from fountains within the plant; (iii) the consumersâ habit of drinking self-bottled mineral water is widespread
Models of radon exhalation from building structures: General and case-specific solutions.
Assessing the radon activity that exhales from building structures is crucial to identify the best strategies to prevent radon from entering a building or reducing its concentration in the inhabited spaces. The direct measurement is extremely difficult, so the common approach has consisted in developing models describing the radon migration and exhalation phenomena for building porous materials. However, due to the mathematical complexity of comprehensively modelling the radon transport phenomenon in buildings, simplified equations have been mostly adopted until now to assess the radon exhalation. A systematic analysis of the models applicable to radon transport has been carried out and it has resulted in four models differing in the migration mechanisms â only diffusive or diffusive and advective â and the presence of inner radon generation. The general solutions have been obtained for all the models. Moreover, three case-specific sets of boundary conditions have been formulated to account for all the actual scenarios occurring in buildings: both perimetral and partition walls and building structures in direct contact with soil or embankments. The corresponding case-specific solutions obtained serve as a key practical tool to improve the accuracy in assessing the contribution of building materials to indoor radon concentration according to the site-specific installation conditions in addition to the material inner properties
Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams
Systematic irradiation of thermally evaporated 0.8âÎŒm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7âMeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450ânm, were measured under laser pumping at 458ânm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106âGy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping
Beam commissioning of the 35Â MeV section in an intensity modulated proton linear accelerator for proton therapy
This paper presents the experimental results on the Terapia Oncologica con Protoni-Intensity Modulated Proton Linear Accelerator (TOP-IMPLART) beam that is currently accelerated up to 35 MeV, with a final target of 150 MeV. The TOP-IMPLART project, funded by the Innovation Department of Regione Lazio (Italy), is led by Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) in collaboration with the Italian Institute of Health and the Oncological Hospital Regina Elena-IFO. The accelerator, under construction and test at ENEA-Frascati laboratories, employs a commercial 425 MHz, 7 MeV injector followed by a sequence of 3 GHz accelerating modules consisting of side coupled drift tube linac (SCDTL) structures up to 71 MeV and coupled cavity linac structures for higher energies. The section from 7 to 35 MeV, consisting on four SCDTL modules, is powered by a single 10 MW klystron and has been successfully commissioned. This result demonstrates the feasibility of a âfully linearâ proton therapy accelerator operating at a high frequency and paves the way to a new class of machines in the field of cancer treatment
The Top-Implart Proton Linear Accelerator: Interim Characteristics of the 35 Mev Beam
In the framework of the Italian TOP-IMPLART project (Regione Lazio), ENEA-Frascati, ISS and IFO are developing and constructing the first proton linear accelerator based on an actively scanned beam for tumor radiotherapy with final energy of 150 MeV. An important feature of this accelerator is modularity: an exploitable beam can be delivered at any stage of its construction, which allows for immediate characterization and virtually continuous improvement of its performance. Currently, a sequence of 3 GHz accelerating modules combined with a commercial injector operating at 425 MHz delivers protons up to 35 MeV. Several dosimetry systems were used to obtain preliminary characteristics of the 35-MeV beam in terms of stability and homogeneity. Short-term stability and homogeneity better than 3% and 2.6%, respectively, were demonstrated; for stability an improvement with respect to the respective value obtained for the previous 27 MeV beam
Lithium fluoride thin film detectors for low-energy proton beam diagnostics by photoluminescence of colour centres
Optically transparent LiF thin films thermally evaporated on glass and Si(100) substrates were used for advanced diagnostics of proton beams of energies from 1.4 to 7 MeV produced by a linear accelerator for protontheraphy under development at ENEA C.R. Frascati. The proton irradiation induces the formation of stable colour centres, among them the aggregate F2 and F3 + optically active defects. After exposure of LiF films grown on glass perpendicularly to the proton beams, their accumulated transversal spatial distributions were carefully measured by reading the latent two-dimensional (2-D) fluorescence images stored in the LiF thin layers by local formation of these broad-band visible light-emitting defects with an optical microscope under blue lamp excitation. Taking advantage from the low thickness of LiF thin films and from the linear behaviour of the integrated F2 and F3 + photoluminescence intensities up to the irradiation fluence of ~5x1015 p/cm2, placing a cleaved LiF film grown on Si substrate with the cutted edge perpendicular to the proton beam, the 2-D fluorescence image of the film surface could allow to obtain the depth profile of the energy released by protons, which mainly lose their energy at the end of the path
Combined Inhibition of CDK4/6 and PI3K/AKT/mTOR Pathways Induces a Synergistic Anti-Tumor Effect in Malignant Pleural Mesothelioma Cells.
Malignant pleural mesothelioma (MPM) is a progressive malignancy associated to the exposure of asbestos fibers. The most frequently inactivated tumor suppressor gene in MPM is CDKN2A/ARF, encoding for the cell cycle inhibitors p16INK4a and p14ARF, deleted in about 70% of MPM cases. Considering the high frequency of alterations of this gene, we tested in MPM cells the efficacy of palbociclib (PD-0332991), a highly selective inhibitor of cyclin-dependent kinase (CDK) 4/6. The analyses were performed on a panel of MPM cell lines and on two primary culture cells from pleural effusion of patients with MPM. All the MPM cell lines, as well as the primary cultures, were sensitive to palbociclib with a significant blockade in G0/G1 phase of the cell cycle and with the acquisition of a senescent phenotype. Palbociclib reduced the phosphorylation levels of CDK6 and Rb, the expression of myc with a concomitant increased phosphorylation of AKT. Based on these results, we tested the efficacy of the combination of palbociclib with the PI3K inhibitors NVP-BEZ235 or NVP-BYL719. After palbociclib treatment, the sequential association with PI3K inhibitors synergistically hampered cell proliferation and strongly increased the percentage of senescent cells. In addition, AKT activation was repressed while p53 and p21 were up-regulated. Interestingly, two cycles of sequential drug administration produced irreversible growth arrest and senescent phenotype that were maintained even after drug withdrawal. These findings suggest that the sequential association of palbociclib with PI3K inhibitors may represent a valuable therapeutic option for the treatment of MPM
- âŠ